Journal of International Reproductive Health/Family Planning ›› 2023, Vol. 42 ›› Issue (2): 135-139.doi: 10.12280/gjszjk.20220553
• Review • Previous Articles Next Articles
HUO Wen-jie, WANG Xiao-cong, PENG Fei, QUAN Song()
Received:
2022-11-25
Published:
2023-03-15
Online:
2023-03-21
Contact:
QUAN Song
E-mail:quansong@smu.edu.cn
HUO Wen-jie, WANG Xiao-cong, PENG Fei, QUAN Song. Application of Deep Learning in Optimal Embryo Selection of In Vitro Fertilization[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 135-139.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Gardner DK, Lane M, Stevens J, et al. Reprint of: Blastocyst score affects implantation and pregnancy outcome: towards a single blastocyst transfer[J]. Fertil Steril, 2019, 112(4 Suppl 1):e81-e84. doi: 10.1016/j.fertnstert.2019.08.077.
doi: 10.1016/j.fertnstert.2019.08.077 pmid: 31623746 |
[2] |
Baxter Bendus AE, Mayer JF, Shipley SK, et al. Interobserver and intraobserver variation in day 3 embryo grading[J]. Fertil Steril, 2006, 86(6):1608-1615. doi: 10.1016/j.fertnstert.2006.05.037.
doi: 10.1016/j.fertnstert.2006.05.037 pmid: 17074349 |
[3] |
Bormann CL, Kanakasabapathy MK, Thirumalaraju P, et al. Performance of a deep learning based neural network in the selection of human blastocysts for implantation[J]. Elife, 2020, 9:e55301. doi: 10.7554/eLife.55301.
doi: 10.7554/eLife.55301 URL |
[4] |
Lundin K, Park H. Time-lapse technology for embryo culture and selection[J]. Ups J Med Sci, 2020, 125(2):77-84. doi: 10.1080/03009734.2020.1728444.
doi: 10.1080/03009734.2020.1728444 URL |
[5] |
LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553):436-444. doi: 10.1038/nature14539.
doi: 10.1038/nature14539 |
[6] |
Chan HP, Samala RK, Hadjiiski LM, et al. Deep Learning in Medical Image Analysis[J]. Adv Exp Med Biol, 2020, 1213:3-21. doi: 10.1007/978-3-030-33128-3_1.
doi: 10.1007/978-3-030-33128-3_1 |
[7] |
Khosravi P, Kazemi E, Zhan Q, et al. Deep learning enables robust assessment and selection of human blastocysts after in vitro fertilization[J]. NPJ Digit Med, 2019, 2:21. doi: 10.1038/s41746-019-0096-y.
doi: 10.1038/s41746-019-0096-y pmid: 31304368 |
[8] |
Liao Q, Zhang Q, Feng X, et al. Development of deep learning algorithms for predicting blastocyst formation and quality by time-lapse monitoring[J]. Commun Biol, 2021, 4(1):415. doi: 10.1038/s42003-021-01937-1.
doi: 10.1038/s42003-021-01937-1 pmid: 33772211 |
[9] |
Tran D, Cooke S, Illingworth PJ, et al. Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer[J]. Hum Reprod, 2019, 34(6):1011-1018. doi: 10.1093/humrep/dez064.
doi: 10.1093/humrep/dez064 |
[10] |
Huang B, Zheng S, Ma B, et al. Using deep learning to predict the outcome of live birth from more than 10,000 embryo data[J]. BMC Pregnancy Childbirth, 2022, 22(1):36. doi: 10.1186/s12884-021-04373-5.
doi: 10.1186/s12884-021-04373-5 |
[11] |
Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542(7639):115-118. doi: 10.1038/nature21056.
doi: 10.1038/nature21056 |
[12] |
Louis CM, Erwin A, Handayani N, et al. Review of computer vision application in in vitro fertilization: the application of deep learning-based computer vision technology in the world of IVF[J]. J Assist Reprod Genet, 2021, 38(7):1627-1639. doi: 10.1007/s10815-021-02123-2.
doi: 10.1007/s10815-021-02123-2 |
[13] |
Wang D, Lu Z, Xu Y, et al. Cellular structure image classification with small targeted training samples[J]. IEEE Access, 2019, 7:148967-148974. doi: 10.1109/access.2019.2940161.
doi: 10.1109/access.2019.2940161 URL |
[14] |
Rad RM, Saeedi P, Au J, et al. Trophectoderm segmentation in human embryo images via inceptioned U-Net[J]. Med Image Anal, 2020, 62:101612. doi: 10.1016/j.media.2019.101612.
doi: 10.1016/j.media.2019.101612 URL |
[15] |
Hu J, Wang H, Wang J, et al. SA-Net: A scale-attention network for medical image segmentation[J]. PLoS One, 2021, 16(4):e0247388. doi: 10.1371/journal.pone.0247388.
doi: 10.1371/journal.pone.0247388 URL |
[16] |
Kragh MF, Rimestad J, Berntsen J, et al. Automatic grading of human blastocysts from time-lapse imaging[J]. Comput Biol Med, 2019, 115:103494. doi: 10.1016/j.compbiomed.2019.103494.
doi: 10.1016/j.compbiomed.2019.103494 URL |
[17] |
Loewke K, Cho JH, Brumar CD, et al. Characterization of an artificial intelligence model for ranking static images of blastocyst stage embryos[J]. Fertil Steril, 2022, 117(3):528-535. doi: 10.1016/j.fertnstert.2021.11.022.
doi: 10.1016/j.fertnstert.2021.11.022 pmid: 34998577 |
[18] |
VerMilyea M, Hall J, Diakiw SM, et al. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF[J]. Hum Reprod, 2020, 35(4):770-784. doi: 10.1093/humrep/deaa013.
doi: 10.1093/humrep/deaa013 URL |
[19] |
Pribenszky C, Nilselid AM, Montag M. Time-lapse culture with morphokinetic embryo selection improves pregnancy and live birth chances and reduces early pregnancy loss: a meta-analysis[J]. Reprod Biomed Online, 2017, 35(5):511-520. doi: 10.1016/j.rbmo.2017.06.022.
doi: S1472-6483(17)30307-3 pmid: 28736152 |
[20] |
Thompson SM, Onwubalili N, Brown K, et al. Blastocyst expansion score and trophectoderm morphology strongly predict successful clinical pregnancy and live birth following elective single embryo blastocyst transfer (eSET): a national study[J]. J Assist Reprod Genet, 2013, 30(12):1577-1581. doi: 10.1007/s10815-013-0100-4.
doi: 10.1007/s10815-013-0100-4 URL |
[21] |
Raudonis V, Paulauskaite-Taraseviciene A, Sutiene K, et al. Towards the automation of early-stage human embryo development detection[J]. Biomed Eng Online, 2019, 18(1):120. doi: 10.1186/s12938-019-0738-y.
doi: 10.1186/s12938-019-0738-y pmid: 31830988 |
[22] |
Dirvanauskas D, Maskeliunas R, Raudonis V, et al. Embryo development stage prediction algorithm for automated time lapse incubators[J]. Comput Methods Programs Biomed, 2019, 177:161-174. doi: 10.1016/j.cmpb.2019.05.027.
doi: 10.1016/j.cmpb.2019.05.027 URL |
[23] |
Leahy BD, Jang WD, Yang HY, et al. Automated Measurements of Key Morphological Features of Human Embryos for IVF[J]. Med Image Comput Comput Assist Interv, 2020, 12265:25-35. doi: 10.1007/978-3-030-59722-1_3.
doi: 10.1007/978-3-030-59722-1_3 pmid: 33313603 |
[24] |
Huang T, Kosasa T, Walker B, et al. Deep learning neural network analysis of human blastocyst expansion from time-lapse image files[J]. Reprod Biomed Online, 2021, 42(6):1075-1085. doi: 10.1016/j.rbmo.2021.02.015.
doi: 10.1016/j.rbmo.2021.02.015 pmid: 33820741 |
[25] |
Berntsen J, Rimestad J, Lassen JT, et al. Robust and generalizable embryo selection based on artificial intelligence and time-lapse image sequences[J]. PLoS One, 2022, 17(2):e0262661. doi: 10.1371/journal.pone.0262661.
doi: 10.1371/journal.pone.0262661 URL |
[26] |
Chavez-Badiola A, Mendizabal-Ruiz G, Flores-Saiffe Farias A, et al. Deep learning as a predictive tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer[J]. Hum Reprod, 2020, 35(2):482. doi: 10.1093/humrep/dez263.
doi: 10.1093/humrep/dez263 URL |
[27] |
Miyagi Y, Habara T, Hirata R, et al. Feasibility of deep learning for predicting live birth from a blastocyst image in patients classified by age[J]. Reprod Med Biol, 2019, 18(2):190-203. doi: 10.1002/rmb2.12266.
doi: 10.1002/rmb2.12266 pmid: 30996683 |
[28] |
Sawada Y, Sato T, Nagaya M, et al. Evaluation of artificial intelligence using time-lapse images of IVF embryos to predict live birth[J]. Reprod Biomed Online, 2021, 43(5):843-852. doi: 10.1016/j.rbmo.2021.05.002.
doi: 10.1016/j.rbmo.2021.05.002 pmid: 34521598 |
[29] |
Miyagi Y, Habara T, Hirata R, et al. Feasibility of predicting live birth by combining conventional embryo evaluation with artificial intelligence applied to a blastocyst image in patients classified by age[J]. Reprod Med Biol, 2019, 18(4):344-356. doi: 10.1002/rmb2.12284.
doi: 10.1002/rmb2.12284 pmid: 31607794 |
[30] |
Thirumalaraju P, Kanakasabapathy MK, Bormann CL, et al. Evaluation of deep convolutional neural networks in classifying human embryo images based on their morphological quality[J]. Heliyon, 2021, 7(2):e06298. doi: 10.1016/j.heliyon.2021.e06298.
doi: 10.1016/j.heliyon.2021.e06298 URL |
[31] |
Fitz VW, Kanakasabapathy MK, Thirumalaraju P, et al. Should there be an "AI" in TEAM? Embryologists selection of high implantation potential embryos improves with the aid of an artificial intelligence algorithm[J]. J Assist Reprod Genet, 2021, 38(10):2663-2670. doi: 10.1007/s10815-021-02318-7.
doi: 10.1007/s10815-021-02318-7 |
[32] |
Ueno S, Berntsen J, Ito M, et al. Pregnancy prediction performance of an annotation-free embryo scoring system on the basis of deep learning after single vitrified-warmed blastocyst transfer: a single-center large cohort retrospective study[J]. Fertil Steril, 2021, 116(4):1172-1180. doi: 10.1016/j.fertnstert.2021.06.001.
doi: 10.1016/j.fertnstert.2021.06.001 pmid: 34246469 |
[33] |
Zheng W, Zhang S, Gu Y, et al. Non-invasive Metabolomic Profiling of Embryo Culture Medium Using Raman Spectroscopy With Deep Learning Model Predicts the Blastocyst Development Potential of Embryos[J]. Front Physiol, 2021, 12:777259. doi: 10.3389/fphys.2021.777259.
doi: 10.3389/fphys.2021.777259 URL |
[1] | WANG Jia-yi, JI Hui, LI Xin, LING Xiu-feng. Effect of Serum β-hCG Level on the Next Day of Dual Trigger in Antagonist Regimen on the Outcome of Fresh Embryo Transfer [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 447-452. |
[2] | WANG Yue, TANG Cen, LI Ya-jin, HU Wan-qin. Risk Factors of Adverse Pregnancy Outcomes in Patients with Undifferentiated Connective Tissue Disease and Construction of A Nomogram Model for Predicting [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 453-457. |
[3] | XIAO Nan, LI Yong-cheng, YAO Yi-ming, SUN Hong-wen, YAO Ru-qiang, CHEN Yong-jun, YIN Yu-chen, LUO Hai-ning. Associations between Phthalates Exposure and Inflammatory Cytokines in Ovarian Microenvironment [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 353-360. |
[4] | LUO Sha-sha, WANG De-jing. Analysis of Influencing Factors of Frozen-Thawed Embryo Transfer Pregnancy Outcome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 420-424. |
[5] | XIE Yu-xin, WANG Rui-xue, CHEN Meng-na, CHU Ji-jun. The Role of Annexin A Family at Maternal-Fetal Interface and Related Adverse Pregnancy [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 430-434. |
[6] | WU Chun-lei, ZHAO Xiao-li, QIU Yun-huan, WANG Bao-juan, DONG Rong, LI Kai-xi, XIA Tian. Integration of Gene Expression Microarrays and Single-Cell Transcriptomics to Identify Intercellular Communication in the Endometrium of Recurrent Implantation Failure Patients [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 265-273. |
[7] | WU Yu-xuan, MENG Zi-fan, DONG Li, JI Hui. The Effect of Time Interval between Hysteroscopic Polypectomy and Start of Frozen-Thawed Embryo Transfer Cycles on Pregnancy Outcomes [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 274-278. |
[8] | LI Miao-miao, JIANG Hong, CAI Peng-da. Influence Factor Analysis and Forecasting Research of Embryonic Arrest [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 332-337. |
[9] | LI Ning, ZHANG An-ni, HE Xiao-xia, ZHANG Xue-hong. A Nomogram Prediction Model for Gestational Hypertension after Frozen Embryo Transfer [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 177-184. |
[10] | ZHANG Ai-yu, LUAN Cui-yu, WANG Dong-mei, JIANG Shuai. Analysis on the Status Quo and Influencing Factors of Medical Treatment Delay in Infertility Patients Undergoing IVF-ET [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 190-194. |
[11] | GU Xu-zhao, SHEN Hao-fei, GAO Min, LIU A-hui, WANG Na, YANG Wen-jing, ZHANG Xue-hong. Didelphic Uterus Combined with Ovarian Pregnancy:A Case Report [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 118-120. |
[12] | HAO Jia-li, HE Yu-jie. Evaluation of Fertility Quality of Life in Infertile Population and Analysis of Influencing Factors [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 159-165. |
[13] | LIANG Jun-xia, YANG Yu-jie, ZHANG Li, GE Li-na, WANG Na-na, TIAN Ying, LIU Peng, YAN Meng. Risk Factors of Unusable Embryos for IVF/ICSI in Older Women [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 1-6. |
[14] | WANG Jie, MA Xiang. Relationship between Uric Acid and Female Reproductive Disorders and Pregnancy Outcomes [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 63-67. |
[15] | LI Cai-hua, GUO Pei-pei, JIANG Xiao-hua, FANG You-yan, ZHOU Ping, WEI Zhao-lian. Application Progress of Progestin-Primed Ovarian Stimulation [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 68-73. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||