国际生殖健康/计划生育 ›› 2021, Vol. 40 ›› Issue (6): 519-523.doi: 10.12280/gjszjk.20210128
收稿日期:
2021-03-18
出版日期:
2021-11-15
发布日期:
2021-11-30
通讯作者:
谢江燕
E-mail:68018026@qq.com
基金资助:
PEI Jiao-jiao, XIE Jiang-yan(), WU Xiao-li
Received:
2021-03-18
Published:
2021-11-15
Online:
2021-11-30
Contact:
XIE Jiang-yan
E-mail:68018026@qq.com
摘要:
叶酸是一组水溶性维生素(维生素B9)的天然存在形式,作为体内一碳单位转移酶系的辅酶,为体内甲基化反应和核酸合成提供重要原材料,其衍生物也是许多一碳单位转移反应的底物。叶酸的饮食来源包括绿叶蔬菜、豆类和强化谷物产品等。叶酸的生物利用度不仅取决于膳食摄入量,还取决于调节叶酸吸收和新陈代谢的细胞作用机制,以及叶酸代谢途径中关键载体的遗传多态性。鉴于相同饮食习惯的个体发生神经管缺陷(neural tube defect,NTD)的风险明显不同,相同叶酸浓度对红细胞的贡献也不同,因此,通过对叶酸吸收、转运的研究,从而认识并掌握NTD发生的机制变得越来越重要。叶酸载体基因是目前研究NTD发生机制的极佳候选基因,研究其多态性为科学地个体化补充易于吸收的叶酸提供依据。
裴娇娇, 谢江燕, 伍小莉. 叶酸载体基因多态性与胎儿神经管缺陷[J]. 国际生殖健康/计划生育, 2021, 40(6): 519-523.
PEI Jiao-jiao, XIE Jiang-yan, WU Xiao-li. Polymorphism of Folic Acid Carrier Gene and Fetal Neural Tube Malformation[J]. Journal of International Reproductive Health/Family Planning, 2021, 40(6): 519-523.
[1] |
Kancherla V, Wagh K, Pachón H, et al. A 2019 global update on folic acid-preventable spina bifida and anencephaly[J]. Birth Defects Res, 2021, 113(1):77-89. doi: 10.1002/bdr2.1835.
doi: 10.1002/bdr2.1835 URL |
[2] |
Zhang L, Zhang Y, Li Z, et al. Maternal periconceptional body mass index and risk for neural tube defects: results from a large cohort study in China[J]. J Matern Fetal Neonatal Med, 2021, 34(2):274-280. doi: 10.1080/14767058.2019.1606192.
doi: 10.1080/14767058.2019.1606192 URL |
[3] |
Blencowe H, Kancherla V, Moorthie S, et al. Estimates of global and regional prevalence of neural tube defects for 2015: a systematic analysis[J]. Ann N Y Acad Sci, 2018, 1414(1):31-46. doi: 10.1111/nyas.13548.
doi: 10.1111/nyas.13548 URL |
[4] |
Liu J, Li Z, Ye R, et al. Periconceptional folic acid supplementation and sex difference in prevention of neural tube defects and their subtypes in China: results from a large prospective cohort study[J]. Nutr J, 2018, 17(1):115. doi: 10.1186/s12937-018-0421-3.
doi: 10.1186/s12937-018-0421-3 |
[5] |
Finnell RH, Caiaffa CD, Kim SE, et al. Gene Environment Interactions in the Etiology of Neural Tube Defects[J]. Front Genet, 2021, 12:659612. doi: 10.3389/fgene.2021.659612.
doi: 10.3389/fgene.2021.659612 URL |
[6] |
Steele JW, Kim SE, Finnell RH. One-carbon metabolism and folate transporter genes: Do they factor prominently in the genetic etiology of neural tube defects?[J]. Biochimie, 2020, 173:27-32. doi: 10.1016/j.biochi.2020.02.005.
doi: S0300-9084(20)30033-X pmid: 32061804 |
[7] |
唐红波, 丁新, 秦春雨, 等. 胎盘叶酸转运体与妊娠并发症的关系研究进展[J]. 中国药学杂志, 2020, 55(14):1133-1137. doi: 10.11669/cpj.2020.14.001.
doi: 10.11669/cpj.2020.14.001 |
[8] |
Findley TO, Tenpenny JC, O′Byrne MR, et al. Mutations in folate transporter genes and risk for human myelomeningocele[J]. Am J Med Genet A, 2017, 173(11):2973-2984. doi: 10.1002/ajmg.a.38472.
doi: 10.1002/ajmg.a.38472 pmid: 28948692 |
[9] |
Zhao R, Aluri S, Goldman ID. The proton-coupled folate transporter (PCFT-SLC46A1) and the syndrome of systemic and cerebral folate deficiency of infancy: Hereditary folate malabsorption[J]. Mol Aspects Med, 2017, 53:57-72. doi: 10.1016/j.mam.2016.09.002.
doi: 10.1016/j.mam.2016.09.002 URL |
[10] |
Jing M, Tactacan GB, Rodriguez-Lecompte JC, et al. Proton-coupled folate transporter (PCFT): molecular cloning, tissue expression patterns and the effects of dietary folate supplementation on mRNA expression in laying hens[J]. Br Poult Sci, 2010, 51(5):635-638. doi: 10.1080/00071668.2010.508490.
doi: 10.1080/00071668.2010.508490 URL |
[11] |
Jacobsen DW. Knocking out the PCFT[J]. Blood, 2011, 117(18):4683-4685. doi: 10.1182/blood-2011-03-340398.
doi: 10.1182/blood-2011-03-340398 pmid: 21546467 |
[12] |
VanderMeer JE, Carter TC, Pangilinan F, et al. Evaluation of proton-coupled folate transporter (SLC46A1) polymorphisms as risk factors for neural tube defects and oral clefts[J]. Am J Med Genet A, 2016, 170A(4):1007-1016. doi: 10.1002/ajmg.a.37539.
doi: 10.1002/ajmg.a.37539 pmid: 26789141 |
[13] |
Murray RC, Williams FM, Flintoff WF. Structural organization of the reduced folate carrier gene in Chinese hamster ovary cells[J]. J Biol Chem, 1996, 271(32):19174-19179. doi: 10.1074/jbc.271.32.19174.
doi: 10.1074/jbc.271.32.19174 pmid: 8702595 |
[14] |
Freisheim JH, Price EM, Ratnam M. Folate coenzyme and antifolate transport proteins in normal and neoplastic cells[J]. Adv Enzyme Regul, 1989, 29:13-26. doi: 10.1016/0065-2571(89)90091-5.
doi: 10.1016/0065-2571(89)90091-5 pmid: 2561247 |
[15] |
Lakkakula B, Murthy J, Gurramkonda VB. Relationship between reduced folate carrier gene polymorphism and non-syndromic cleft lip and palate in Indian population[J]. J Matern Fetal Neonatal Med, 2015, 28(3):329-332. doi: 10.3109/14767058.2014.916677.
doi: 10.3109/14767058.2014.916677 pmid: 24749799 |
[16] |
Chatzikyriakidou A, Georgiou I, Voulgari PV, et al. Transcription regulatory polymorphism -43T>C in the 5′-flanking region of SLC19A1 gene could affect rheumatoid arthritis patient response to methotrexate therapy[J]. Rheumatol Int, 2007, 27(11):1057-1061. doi: 10.1007/s00296-007-0339-0.
doi: 10.1007/s00296-007-0339-0 pmid: 17404734 |
[17] |
Rah H, Choi YS, Jeon YJ, et al. Solute Carrier Family 19, member 1 (SLC19A1) polymorphisms (-43T>C, 80G>A, and 696C>T), and haplotypes in idiopathic recurrent spontaneous abortion in a Korean population[J]. Reprod Sci, 2012, 19(5):513-519. doi: 10.1177/1933719111426604.
doi: 10.1177/1933719111426604 URL |
[18] |
Cai CQ, Fang YL, Shu JB, et al. Association of neural tube defects with maternal alterations and genetic polymorphisms in one-carbon metabolic pathway[J]. Ital J Pediatr, 2019, 45(1):37. doi: 10.1186/s13052-019-0630-1.
doi: 10.1186/s13052-019-0630-1 URL |
[19] |
Cao L, Wang Y, Zhang R, et al. Association of neural tube defects with gene polymorphisms in one-carbon metabolic pathway[J]. Childs Nerv Syst, 2018, 34(2):277-284. doi: 10.1007/s00381-017-3558-z.
doi: 10.1007/s00381-017-3558-z URL |
[20] |
De Marco P, Calevo MG, Moroni A, et al. Polymorphisms in genes involved in folate metabolism as risk factors for NTDs[J]. Eur J Pediatr Surg, 2001, 11(Suppl 1):S14-S17. doi: 10.1055/s-2001-19739.
doi: 10.1055/s-2001-19739 URL |
[21] |
Donnan J, Walsh S, Sikora L, et al. A systematic review of the risks factors associated with the onset and natural progression of spina bifida[J]. Neurotoxicology, 2017, 61:20-31. doi: 10.1016/j.neuro.2016.03.008.
doi: 10.1016/j.neuro.2016.03.008 URL |
[22] |
Lawrence SA, Hackett JC, Moran RG. Tetrahydrofolate recognition by the mitochondrial folate transporter[J]. J Biol Chem, 2011, 286(36):31480-31489. doi: 10.1074/jbc.M111.272187.
doi: 10.1074/jbc.M111.272187 pmid: 21768094 |
[23] |
Ducker GS, Rabinowitz JD. One-Carbon Metabolism in Health and Disease[J]. Cell Metab, 2017, 25(1):27-42. doi: 10.1016/j.cmet.2016.08.009.
doi: 10.1016/j.cmet.2016.08.009 URL |
[24] |
Kim J, Lei Y, Guo J, et al. Formate rescues neural tube defects caused by mutations in Slc25a32[J]. Proc Natl Acad Sci U S A, 2018, 115(18):4690-4695. doi: 10.1073/pnas.1800138115.
doi: 10.1073/pnas.1800138115 URL |
[25] |
Gao X, Finnell RH, Wang H, et al. Network correlation analysis revealed potential new mechanisms for neural tube defects beyond folic acid[J]. Birth Defects Res, 2018, 110(12):982-993. doi: 10.1002/bdr2.1336.
doi: 10.1002/bdr2.1336 URL |
[26] |
Guo J, Xie H, Wang J, et al. The maternal folate hydrolase gene polymorphism is associated with neural tube defects in a high-risk Chinese population[J]. Genes Nutr, 2013, 8(2):191-197. doi: 10.1007/s12263-012-0309-3.
doi: 10.1007/s12263-012-0309-3 URL |
[27] |
Vieira AR, Trembath D, Vandyke DC, et al. Studies with His475Tyr glutamate carboxipeptidase II polymorphism and neural tube defects[J]. Am J Med Genet, 2002, 111(2):218-219. doi: 10.1002/ajmg.10568.
doi: 10.1002/ajmg.10568 URL |
[28] |
Nakatsu T, Uwabe C, Shiota K. Neural tube closure in humans initiates at multiple sites: evidence from human embryos and implications for the pathogenesis of neural tube defects[J]. Anat Embryol (Berl), 2000, 201(6):455-466. doi: 10.1007/s004290050332.
doi: 10.1007/s004290050332 URL |
[29] |
Xie H, Guo J, Wang J, et al. Glutamate carboxypeptidase II gene polymorphisms and neural tube defects in a high-risk Chinese population[J]. Metab Brain Dis, 2012, 27(1):59-65. doi: 10.1007/s11011-011-9272-8.
doi: 10.1007/s11011-011-9272-8 URL |
[30] |
Paul S, Sadhukhan S, Munian D, et al. Association of FOLH1, DHFR, and MTHFR gene polymorphisms with susceptibility of Neural Tube Defects: A case control study from Eastern India[J]. Birth Defects Res, 2018, 110(14):1129-1138. doi: 10.1002/bdr2.1365.
doi: 10.1002/bdr2.1365 URL |
[31] |
Jessel RH, Rosario FJ, Chen YY, et al. Decreased placental folate transporter expression and activity in first and second trimester in obese mothers[J]. J Nutr Biochem, 2020, 77:108305. doi: 10.1016/j.jnutbio.2019.108305.
doi: 10.1016/j.jnutbio.2019.108305 URL |
[32] |
Seelan RS, Mukhopadhyay P, Philipose J, et al. Gestational folate deficiency alters embryonic gene expression and cell function[J]. Differentiation, 2021, 117:1-15. doi: 10.1016/j.diff.2020.11.001.
doi: 10.1016/j.diff.2020.11.001 URL |
[33] |
Saitsu H. Folate receptors and neural tube closure[J]. Congenit Anom (Kyoto), 2017, 57(5):130-133. doi: 10.1111/cga.12218.
doi: 10.1111/cga.12218 URL |
[34] |
Martin JB, Muccioli M, Herman K, et al. Folic acid modifies the shape of epithelial cells during morphogenesis via a Folr1 and MLCK dependent mechanism[J]. Biol Open, 2019, 8(1):bio041160. doi: 10.1242/bio.041160.
doi: 10.1242/bio.041160 URL |
[35] |
Xu Y, Yan C, Hao Z, et al. Association between BHMT gene rs3733890 polymorphism and cancer risk: evidence from a meta-analysis[J]. Onco Targets Ther, 2016, 9:5225-5233. doi: 10.2147/OTT.S103901.
doi: 10.2147/OTT.S103901 URL |
[1] | 周洋,孙昊,金志军,吴玉仙,王成才. 子宫内膜癌组织中叶酸受体α与CA125的表达及临床意义[J]. 国际生殖健康/计划生育, 2019, 38(3): 209-213. |
[2] | 黄山鹰,唐国玲,刘庆芝,姚吉龙,姚秀华. MTHFR的基因多态性与原因不明复发性流产的相关性分析[J]. 国际生殖健康/计划生育, 2017, 36(5): 382-384. |
[3] | 常歌,牛勃. 叶酸及DNA甲基化与神经管畸形关系的研究进展[J]. 国际生殖健康/计划生育, 2017, 36(5): 426-429. |
[4] | 王宏伟;茅群霞;刘庆. 育龄妇女受教育程度与其对叶酸补充认知及服用关系的Meta分析[J]. 国际生殖健康/计划生育, 2015, 34(1): 43-47. |
[5] | 官臻;王建华;牛勃. 细胞凋亡与神经管畸形[J]. 国际生殖健康/计划生育, 2012, 31(2): 141-144. |
[6] | 黄 敏;梁琼麟;王义明;胡 坪;罗国安. 神经管畸形相关磷脂代谢的研究进展[J]. 国际生殖健康/计划生育, 2011, 30(3): 159-163. |
[7] | 孙立娟;张 颖. 叶酸代谢相关酶基因多态性与唐氏综合征[J]. 国际生殖健康/计划生育, 2011, 30(3): 240-242. |
[8] | 裴丽君;朱慧萍;刘建蒙;叶荣伟;李智文;任爱国;郑晓瑛. 神经管畸形儿及其父母还原叶酸载体基因多态性的 FBAT关联研究[J]. 国际生殖健康/计划生育, 2011, 30(3): 169-172. |
[9] | 刘 玲;钱卫平. 亚甲基四氢叶酸还原酶及甲硫氨酸合成酶基因多态性与 男性不育[J]. 国际生殖健康/计划生育, 2011, 30(3): 222-225. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||