[1] |
Ferlin A, Foresta C. New genetic markers for male infertility[J]. Curr Opin Obstet Gynecol, 2014, 26(3):193-198. doi: 10.1097/GCO.0000000000000061.
doi: 10.1097/GCO.0000000000000061
URL
|
[2] |
Khourdaji I, Lee H, Smith RP. Frontiers in hormone therapy for male infertility[J]. Transl Androl Urol, 2018, 7(Suppl 3):S353-S366. doi: 10.21037/tau.2018.04.03.
doi: 10.21037/tau.2018.04.03
URL
|
[3] |
Ge P, Zhang J, Zhou L, et al. CircRNA expression profile and functional analysis in testicular tissue of patients with non-obstructive azoospermia[J]. Reprod Biol Endocrinol, 2019, 17(1):100. doi: 10.1186/s12958-019-0541-4.
doi: 10.1186/s12958-019-0541-4
URL
|
[4] |
Gu X, Li H, Chen X, et al. PEX10, SIRPA-SIRPG, and SOX5 gene polymorphisms are strongly associated with nonobstructive azoospermia susceptibility[J]. J Assist Reprod Genet, 2019, 36(4):759-768. doi: 10.1007/s10815-019-01417-w.
doi: 10.1007/s10815-019-01417-w
URL
|
[5] |
Bai G, Zhai X, Liu L, et al. The molecular characteristics in different procedures of spermatogenesis[J]. Gene, 2022, 826:146405. doi: 10.1016/j.gene.2022.146405.
doi: 10.1016/j.gene.2022.146405
URL
|
[6] |
Arafat M, Har-Vardi I, Harlev A, et al. Mutation in TDRD9 causes non-obstructive azoospermia in infertile men[J]. J Med Genet, 2017, 54(9):633-639. doi: 10.1136/jmedgenet-2017-104514.
doi: 10.1136/jmedgenet-2017-104514
pmid: 28536242
|
[7] |
Liu L, Li F, Wen Z, et al. Preliminary investigation of the function of hsa_circ_0049356 in nonobstructive azoospermia patients[J]. Andrologia, 2020, 52(11):e13814. doi: 10.1111/and.13814.
doi: 10.1111/and.13814
|
[8] |
Majzoub A, Arafa M, Khalafalla K, et al. Predictive model to estimate the chances of successful sperm retrieval by testicular sperm aspiration in patients with nonobstructive azoospermia[J]. Fertil Steril, 2021, 115(2):373-381. doi: 10.1016/j.fertnstert.2020.08.1397.
doi: 10.1016/j.fertnstert.2020.08.1397
pmid: 33059887
|
[9] |
Wu X, Lin D, Sun F, et al. Male Infertility in Humans: An Update on Non-obstructive Azoospermia (NOA) and Obstructive Azoospermia (OA)[J]. Adv Exp Med Biol, 2021, 1288:161-173. doi: 10.1007/978-3-030-77779-1_8.
doi: 10.1007/978-3-030-77779-1_8
|
[10] |
Kasak L, Laan M. Monogenic causes of non-obstructive azoospermia: challenges, established knowledge, limitations and perspectives[J]. Hum Genet, 2021, 140(1):135-154. doi: 10.1007/s00439-020-02112-y.
doi: 10.1007/s00439-020-02112-y
URL
|
[11] |
Oka S, Shiraishi K, Matsuyama H. Effects of human chorionic gonadotropin on testicular interstitial tissues in men with non-obstructive azoospermia[J]. Andrology, 2017, 5(2):232-239. doi: 10.1111/andr.12292.
doi: 10.1111/andr.12292
pmid: 27860441
|
[12] |
Zhang J, He X, Wu H, et al. Loss of DRC1 function leads to multiple morphological abnormalities of the sperm flagella and male infertility in human and mouse[J]. Hum Mol Genet, 2021, 30(21):1996-2011. doi: 10.1093/hmg/ddab171.
doi: 10.1093/hmg/ddab171
URL
|
[13] |
Gao Y, Xu C, Tan Q, et al. Case Report: Novel Biallelic Mutations in ARMC4 Cause Primary Ciliary Dyskinesia and Male Infertility in a Chinese Family[J]. Front Genet, 2021, 12:715339. doi: 10.3389/fgene.2021.715339.
doi: 10.3389/fgene.2021.715339
URL
|
[14] |
Liu L, Jyu J, Wang X, et al. Progress of miRNA in male infertility: how close are we to noninvasive and accurate diagnostic markers? Systematic review and meta-analysis[J]. Biomark Med, 2021, 15(17):1681-1692. doi: 10.2217/bmm-2020-0434.
doi: 10.2217/bmm-2020-0434
|
[15] |
Tektemur A, Etem Önalan E, Kaya Tektemur N, et al. Verapamil-induced ion channel and miRNA expression changes in rat testis and/or spermatozoa may be associated with male infertility[J]. Andrologia, 2020, 52(10):e13778. doi: 10.1111/and.13778.
doi: 10.1111/and.13778
|
[16] |
Sirotkin AV, Kisová G, Brenaut P, et al. Involvement of microRNA Mir15a in control of human ovarian granulosa cell proliferation, apoptosis, steroidogenesis, and response to FSH[J]. Microrna, 2014, 3(1):29-36. doi: 10.2174/2211536603666140227232824.
doi: 10.2174/2211536603666140227232824
URL
|
[17] |
Xu P, Wang Y, Deng Z, et al. MicroRNA-15a promotes prostate cancer cell ferroptosis by inhibiting GPX4 expression[J]. Oncol Lett, 2022, 23(2):67. doi: 10.3892/ol.2022.13186.
doi: 10.3892/ol.2022.13186
URL
|
[18] |
Cannarella R, Barbagallo F, Crafa A, et al. Seminal Plasma Transcriptome and Proteome: Towards a Molecular Approach in the Diagnosis of Idiopathic Male Infertility[J]. Int J Mol Sci, 2020, 21(19):7308. doi: 10.3390/ijms21197308.
doi: 10.3390/ijms21197308
URL
|
[19] |
Ozawa H. Kisspeptin neurons as an integration center of reproductive regulation: Observation of reproductive function based on a new concept of reproductive regulatory nervous system[J]. Reprod Med Biol, 2022, 21(1):e12419. doi: 10.1002/rmb2.12419.
doi: 10.1002/rmb2.12419
|
[20] |
Maekawa M, Ito C, Toyama Y, et al. Localisation of RA175 (Cadm1), a cell adhesion molecule of the immunoglobulin superfamily, in the mouse testis, and analysis of male infertility in the RA175-deficient mouse[J]. Andrologia, 2011, 43(3):180-188. doi: 10.1111/j.1439-0272.2010.01049.x.
doi: 10.1111/j.1439-0272.2010.01049.x
pmid: 21486398
|
[21] |
Yamada D, Yoshida M, Williams YN, et al. Disruption of spermatogenic cell adhesion and male infertility in mice lacking TSLC1/IGSF4, an immunoglobulin superfamily cell adhesion molecule[J]. Mol Cell Biol, 2006, 26(9):3610-3624. doi: 10.1128/MCB.26.9.3610-3624.2006.
doi: 10.1128/MCB.26.9.3610-3624.2006
URL
|