[1] |
Gibbs GM, Roelants K, O′Bryan MK, et al. The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins--roles in reproduction, cancer, and immune defense[J]. Endocr Rev, 2008, 29(7):865-897. doi: 10.1210/er.2008-0032.
doi: 10.1210/er.2008-0032
URL
|
[2] |
Abraham A, Chandler DE. Tracing the Evolutionary History of the CAP Superfamily of Proteins Using Amino Acid Sequence Homology and Conservation of Splice Sites[J]. J Mol Evol, 2017, 85(3/4):137-157. doi: 10.1007/s00239-017-9813-9.
doi: 10.1007/s00239-017-9813-9
URL
|
[3] |
Istas G, Declerck K, Pudenz M, et al. Identification of differentially methylated BRCA1 and CRISP2 DNA regions as blood surrogate markers for cardiovascular disease[J]. Sci Rep, 2017, 7(1):5120. doi: 10.1038/s41598-017-03434-0.
doi: 10.1038/s41598-017-03434-0
URL
|
[4] |
Vicens A, Treviño CL. Positive Selection in the Evolution of Mammalian CRISPs[J]. J Mol Evol, 2018, 86(9):635-645. doi: 10.1007/s00239-018-9872-6.
doi: 10.1007/s00239-018-9872-6
URL
|
[5] |
Ernesto JI, Weigel Muñoz M, Battistone MA, et al. CRISP1 as a novel CatSper regulator that modulates sperm motility and orientation during fertilization[J]. J Cell Biol, 2015, 210(7):1213-1224. doi: 10.1083/jcb.201412041.
doi: 10.1083/jcb.201412041
URL
|
[6] |
Da Ros VG, Muñoz MW, Battistone MA, et al. From the epididymis to the egg: participation of CRISP proteins in mammalian fertilization[J]. Asian J Androl, 2015, 17(5):711-715. doi: 10.4103/1008-682X.155769.
doi: 10.4103/1008-682X.155769
|
[7] |
Volpert M, Furic L, Hu J, et al. CRISP3 expression drives prostate cancer invasion and progression[J]. Endocr Relat Cancer, 2020, 27(7):415-430. doi: 10.1530/ERC-20-0092.
doi: 10.1530/ERC-20-0092
URL
|
[8] |
Weigel Muñoz M, Carvajal G, Curci L, et al. Relevance of CRISP proteins for epididymal physiology, fertilization, and fertility[J]. Andrology, 2019, 7(5):610-617. doi: 10.1111/andr.12638.
doi: 10.1111/andr.12638
pmid: 31218833
|
[9] |
Carvajal G, Brukman NG, Weigel Muñoz M, et al. Impaired male fertility and abnormal epididymal epithelium differentiation in mice lacking CRISP1 and CRISP4[J]. Sci Rep, 2018, 8(1):17531. doi: 10.1038/s41598-018-35719-3.
doi: 10.1038/s41598-018-35719-3
URL
|
[10] |
Weigel Muñoz M, Battistone MA, Carvajal G, et al. Influence of the genetic background on the reproductive phenotype of mice lacking Cysteine-Rich Secretory Protein 1 (CRISP1)[J]. Biol Reprod, 2018, 99(2):373-383. doi: 10.1093/biolre/ioy048.
doi: 10.1093/biolre/ioy048
URL
|
[11] |
Maldera JA, Weigel Muñoz M, Chirinos M, et al. Human fertilization: epididymal hCRISP1 mediates sperm-zona pellucida binding through its interaction with ZP3[J]. Mol Hum Reprod, 2014, 20(4):341-349. doi: 10.1093/molehr/gat092.
doi: 10.1093/molehr/gat092
pmid: 24334245
|
[12] |
高轲, 王志强, 刘星辰. 少、弱、畸精子症相关遗传基因研究进展[J]. 中华男科学杂志, 2017, 23(4):367-371. doi: 10.13263/j.cnki.nja.2017.04.014.
doi: 10.13263/j.cnki.nja.2017.04.014
|
[13] |
Gholami D, Salman Yazdi R, Jami MS, et al. The expression of Cysteine-Rich Secretory Protein 2 (CRISP2) and miR-582-5p in seminal plasma fluid and spermatozoa of infertile men[J]. Gene, 2020, 730:144261. doi: 10.1016/j.gene.2019.144261.
doi: S0378-1119(19)30920-5
pmid: 31778754
|
[14] |
Lim S, Kierzek M, O′Connor AE, et al. CRISP2 Is a Regulator of Multiple Aspects of Sperm Function and Male Fertility[J]. Endocrinology, 2019, 160(4):915-924. doi: 10.1210/en.2018-01076.
doi: 10.1210/en.2018-01076
URL
|
[15] |
Nimlamool W, Bean BS, Lowe-Krentz LJ. Human sperm CRISP2 is released from the acrosome during the acrosome reaction and re-associates at the equatorial segment[J]. Mol Reprod Dev, 2013, 80(6):488-502. doi: 10.1002/mrd.22189.
doi: 10.1002/mrd.22189
pmid: 23661501
|
[16] |
Busso D, Cohen DJ, Maldera JA, et al. A novel function for CRISP1 in rodent fertilization: involvement in sperm-zona pellucida interaction[J]. Biol Reprod, 2007, 77(5):848-854. doi: 10.1095/biolreprod.107.061788.
doi: 10.1095/biolreprod.107.061788
URL
|
[17] |
Arévalo L, Brukman NG, Cuasnicú PS, et al. Evolutionary analysis of genes coding for Cysteine-RIch Secretory Proteins (CRISPs) in mammals[J]. BMC Evol Biol, 2020, 20(1):67. doi: 10.1186/s12862-020-01632-5.
doi: 10.1186/s12862-020-01632-5
pmid: 32513118
|
[18] |
Choudhary V, Schneiter R. Pathogen-Related Yeast (PRY) proteins and members of the CAP superfamily are secreted sterol-binding proteins[J]. Proc Natl Acad Sci U S A, 2012, 109(42):16882-16887. doi: 10.1073/pnas.1209086109.
doi: 10.1073/pnas.1209086109
pmid: 23027975
|
[19] |
Jamsai D, Rijal S, Bianco DM, et al. A novel protein, sperm head and tail associated protein (SHTAP), interacts with cysteine-rich secretory protein 2 (CRISP2) during spermatogenesis in the mouse[J]. Biol Cell, 2009, 102(2):93-106. doi: 10.1042/BC20090099.
doi: 10.1042/BC20090099
URL
|
[20] |
Brukman NG, Miyata H, Torres P, et al. Fertilization defects in sperm from Cysteine-rich secretory protein 2 (Crisp2) knockout mice: implications for fertility disorders[J]. Mol Hum Reprod, 2016, 22(4):240-251. doi: 10.1093/molehr/gaw005.
doi: 10.1093/molehr/gaw005
pmid: 26786179
|
[21] |
Claw KG, George RD, Swanson WJ. Detecting coevolution in mammalian sperm-egg fusion proteins[J]. Mol Reprod Dev, 2014, 81(6):531-538. doi: 10.1002/mrd.22321.
doi: 10.1002/mrd.22321
URL
|
[22] |
Anklesaria JH, Kulkarni BJ, Pathak BR, et al. Identification of CRISP2 from human sperm as PSP94-binding protein and generation of CRISP2-specific anti-peptide antibodies[J]. J Pept Sci, 2016, 22(6):383-390. doi: 10.1002/psc.2878.
doi: 10.1002/psc.2878
pmid: 27161017
|
[23] |
Gaikwad AS, Anderson AL, Merriner DJ, et al. GLIPR1L1 is an IZUMO-binding protein required for optimal fertilization in the mouse[J]. BMC Biol, 2019, 17(1):86. doi: 10.1186/s12915-019-0701-1.
doi: 10.1186/s12915-019-0701-1
URL
|
[24] |
Gaikwad AS, Hu J, Chapple DG, et al. The functions of CAP superfamily proteins in mammalian fertility and disease[J]. Hum Reprod Update, 2020, 26(5):689-723. doi: 10.1093/humupd/dmaa016.
doi: 10.1093/humupd/dmaa016
URL
|
[25] |
Oud MS, Volozonoka L, Smits RM, et al. A systematic review and standardized clinical validity assessment of male infertility genes[J]. Hum Reprod, 2019, 34(5):932-941. doi: 10.1093/humrep/dez022.
doi: 10.1093/humrep/dez022
URL
|
[26] |
Du Y, Huang X, Li J, et al. Human testis specific protein 1 expression in human spermatogenesis and involvement in the pathogenesis of male infertility[J]. Fertil Steril, 2006, 85(6):1852-1854. doi: 10.1016/j.fertnstert.2005.11.064.
doi: 10.1016/j.fertnstert.2005.11.064
URL
|
[27] |
Heidary Z, Zaki-Dizaji M, Saliminejad K, et al. Expression Analysis of the CRISP2, CATSPER1, PATE1 and SEMG1 in the Sperm of Men with Idiopathic Asthenozoospermia[J]. J Reprod Infertil, 2019, 20(2):70-75.
pmid: 31058050
|
[28] |
Zhou JH, Zhou QZ, Yang JK, et al. MicroRNA-27a-mediated repression of cysteine-rich secretory protein 2 translation in asthenoteratozoospermic patients[J]. Asian J Androl, 2017, 19(5):591-595. doi: 10.4103/1008-682X.185001.
doi: 10.4103/1008-682X.185001
URL
|
[29] |
Zhou JH, Zhou QZ, Lyu XM, et al. The expression of cysteine-rich secretory protein 2 (CRISP2) and its specific regulator miR-27b in the spermatozoa of patients with asthenozoospermia[J]. Biol Reprod, 2015, 92(1):28. doi: 10.1095/biolreprod.114.124487.
doi: 10.1095/biolreprod.114.124487
|
[30] |
Agarwal A, Sharma R, Durairajanayagam D, et al. Major protein alterations in spermatozoa from infertile men with unilateral varicocele[J]. Reprod Biol Endocrinol, 2015, 13:8. doi: 10.1186/s12958-015-0007-2.
doi: 10.1186/s12958-015-0007-2
URL
|
[31] |
Muñoz MW, Ernesto JI, Bluguermann C, et al. Evaluation of testicular sperm CRISP2 as a potential target for contraception[J]. J Androl, 2012, 33(6):1360-1370. doi: 10.2164/jandrol.112.016725.
doi: 10.2164/jandrol.112.016725
URL
|