[1] |
Kuroki L, Guntupalli SR. Treatment of epithelial ovarian cancer[J]. BMJ, 2020, 371:m3773. doi: 10.1136/bmj.m3773.
doi: 10.1136/bmj.m3773
|
[2] |
Júlia Š, Petr V, Radek V, et al. Ovarian tumors and genetic predisposition[J]. Ceska Gynekol, 2022, 87(3):211-216. doi: 10.48095/cccg2022211.
doi: 10.48095/cccg2022211
URL
|
[3] |
Ramraj SK, Elayapillai SP, Pelikan RC, et al. Novel ovarian cancer maintenance therapy targeted at mortalin and mutant p53[J]. Int J Cancer, 2020, 147(4):1086-1097. doi: 10.1002/ijc.32830.
doi: 10.1002/ijc.32830
pmid: 31845320
|
[4] |
Coughlan AY, Testa G. Exploiting epigenetic dependencies in ovarian cancer therapy[J]. Int J Cancer, 2021, 149(10):1732-1743. doi: 10.1002/ijc.33727.
doi: 10.1002/ijc.33727
pmid: 34213777
|
[5] |
Wang S, Chen FE. Small-molecule MDM2 inhibitors in clinical trials for cancer therapy[J]. Eur J Med Chem, 2022, 236:114334. doi: 10.1016/j.ejmech.2022.114334.
doi: 10.1016/j.ejmech.2022.114334
URL
|
[6] |
Wimberger P, Gerber MJ, Pfisterer J, et al. Bevacizumab May Differentially Improve Prognosis of Advanced Ovarian Cancer Patients with Low Expression of VEGF-A165b, an Antiangiogenic VEGF-A Splice Variant[J]. Clin Cancer Res, 2022, 28(21):4660-4668. doi: 10.1158/1078-0432.CCR-22-1326.
doi: 10.1158/1078-0432.CCR-22-1326
pmid: 36001383
|
[7] |
Rubinstein MM, Makker V. Optimizing immunotherapy for gynecologic cancers[J]. Curr Opin Obstet Gynecol, 2020, 32(1):1-8. doi: 10.1097/GCO.0000000000000603.
doi: 10.1097/GCO.0000000000000603
URL
|
[8] |
Li W, Li F, Zhang X, et al. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment[J]. Signal Transduct Target Ther, 2021, 6(1):422. doi: 10.1038/s41392-021-00825-8.
doi: 10.1038/s41392-021-00825-8
|
[9] |
张闳博, 韩伟. 头颈部鳞状细胞癌中蛋白质翻译后修饰的研究进展[J]. 中华口腔医学杂志, 2020, 55(10):789-793. doi: 10.3760/cma.j.cn112144-20200122-00025.
doi: 10.3760/cma.j.cn112144-20200122-00025
|
[10] |
Samaržija I. Post-Translational Modifications That Drive Prostate Cancer Progression[J]. Biomolecules, 2021, 11(2):247. doi: 10.3390/biom11020247.
doi: 10.3390/biom11020247
URL
|
[11] |
Cocchiola R, Rubini E, Altieri F, et al. STAT3 Post-Translational Modifications Drive Cellular Signaling Pathways in Prostate Cancer Cells[J]. Int J Mol Sci, 2019, 20(8):1815. doi: 10.3390/ijms20081815.
doi: 10.3390/ijms20081815
|
[12] |
Fuentes-Antrás J, Alcaraz-Sanabria AL, Morafraile EC, et al. Mapping of Genomic Vulnerabilities in the Post-Translational Ubiquitination, SUMOylation and Neddylation Machinery in Breast Cancer[J]. Cancers(Basel), 2021, 13(4):833. doi: 10.3390/cancers13040833.
doi: 10.3390/cancers13040833
|
[13] |
Yuan M, Chen X, Sun Y, et al. ZDHHC12-mediated claudin-3 S-palmitoylation determines ovarian cancer progression[J]. Acta Pharm Sin B, 2020, 10(8):1426-1439. doi: 10.1016/j.apsb.2020.03.008.
doi: 10.1016/j.apsb.2020.03.008
URL
|
[14] |
Li J, Xu J, Li L, et al. MGAT3-mediated glycosylation of tetraspanin CD82 at asparagine 157 suppresses ovarian cancer metastasis by inhibiting the integrin signaling pathway[J]. Theranostics, 2020, 10(14):6467-6482. doi: 10.7150/thno.43865.
doi: 10.7150/thno.43865
pmid: 32483464
|
[15] |
Cho SJ, Jeong BY, Song YS, et al. STAT3 mediates RCP-induced cancer cell invasion through the NF-κB/Slug/MT1-MMP signaling cascade[J]. Arch Pharm Res, 2022, 45(7):460-474. doi: 10.1007/s12272-022-01396-0.
doi: 10.1007/s12272-022-01396-0
pmid: 35809175
|
[16] |
Choe SR, Kim YN, Park CG, et al. RCP induces FAK phosphorylation and ovarian cancer cell invasion with inhibition by curcumin[J]. Exp Mol Med, 2018, 50(4):1-10. doi: 10.1038/s12276-018-0078-1.
doi: 10.1038/s12276-018-0078-1
|
[17] |
Hwang WY, Park WH, Suh DH, et al. Difluoromethylornithine Induces Apoptosis through Regulation of AP-1 Signaling via JNK Phosphorylation in Epithelial Ovarian Cancer[J]. Int J Mol Sci, 2021, 22(19):10255. doi: 10.3390/ijms221910255.
doi: 10.3390/ijms221910255
URL
|
[18] |
Zhang X, Wang L, Chen S, et al. Combined inhibition of BADSer99 phosphorylation and PARP ablates models of recurrent ovarian carcinoma[J]. Commun Med(Lond), 2022, 2:82. doi: 10.1038/s43856-022-00142-3.
doi: 10.1038/s43856-022-00142-3
|
[19] |
Wang Y, Chiou YS, Chong QY, et al. Pharmacological Inhibition of BAD Ser99 Phosphorylation Enhances the Efficacy of Cisplatin in Ovarian Cancer by Inhibition of Cancer Stem Cell-like Behavior[J]. ACS Pharmacol Transl Sci, 2020, 3(6):1083-1099. doi: 10.1021/acsptsci.0c00064.
doi: 10.1021/acsptsci.0c00064
pmid: 33344891
|
[20] |
Kamińska I, Bar JK. The association between p53 protein phosphorylation at serine 15, serine 20 and sensitivity of cells isolated from patients with ovarian cancer and cell lines to chemotherapy in in vitro study[J]. Pharmacol Rep, 2018, 70(3):570-576. doi: 10.1016/j.pharep.2017.12.004.
doi: S1734-1140(17)30550-9
pmid: 29684847
|
[21] |
Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation[J]. Nat Rev Mol Cell Biol, 2022, 23(5):329-349. doi: 10.1038/s41580-021-00441-y.
doi: 10.1038/s41580-021-00441-y
|
[22] |
Liu W, Zhan Z, Zhang M, et al. KAT6A, a novel regulator of β-catenin, promotes tumorigenicity and chemoresistance in ovarian cancer by acetylating COP1[J]. Theranostics, 2021, 11(13):6278-6292. doi: 10.7150/thno.57455.
doi: 10.7150/thno.57455
pmid: 33995658
|
[23] |
Jiang W, Jiang P, Yang R, et al. Functional role of SIRT1-induced HMGB1 expression and acetylation in migration, invasion and angiogenesis of ovarian cancer[J]. Eur Rev Med Pharmacol Sci, 2018, 22(14):4431-4439. doi: 10.26355/eurrev_201807_15494.
doi: 10.26355/eurrev_201807_15494
|
[24] |
Lee JB, Pyo KH, Kim HR. Role and Function of O-GlcNAcylation in Cancer[J]. Cancers(Basel), 2021, 13(21):5365. doi: 10.3390/cancers13215365.
doi: 10.3390/cancers13215365
|
[25] |
de Queiroz RM, Madan R, Chien J, et al. Changes in O-Linked N-Acetylglucosamine(O-GlcNAc) Homeostasis Activate the p53 Pathway in Ovarian Cancer Cells[J]. J Biol Chem, 2016, 291(36):18897-18914. doi: 10.1074/jbc.M116.734533.
doi: 10.1074/jbc.M116.734533
URL
|
[26] |
程慧彦. O-GlcNAc糖基化通过修饰c-Jun调控MUC1促进卵巢癌增殖的实验研究[D]. 长春: 吉林大学, 2020. doi: 10.27162/d.cnki.gllin.2020.007338.
doi: 10.27162/d.cnki.gllin.2020.007338
|
[27] |
Shahid M, Kim M, Jin P, et al. S-Palmitoylation as a Functional Regulator of Proteins Associated with Cisplatin Resistance in Bladder Cancer[J]. Int J Biol Sci, 2020, 16(14):2490-2505. doi: 10.7150/ijbs.45640.
doi: 10.7150/ijbs.45640
pmid: 32792852
|
[28] |
Remsberg JR, Suciu RM, Zambetti NA, et al. ABHD17 regulation of plasma membrane palmitoylation and N-Ras-dependent cancer growth[J]. Nat Chem Biol, 2021, 17(8):856-864. doi: 10.1038/s41589-021-00785-8.
doi: 10.1038/s41589-021-00785-8
pmid: 33927411
|
[29] |
Kharbanda A, Walter DM, Gudiel AA, et al. Blocking EGFR palmitoylation suppresses PI3K signaling and mutant KRAS lung tumorigenesis[J]. Sci Signal, 2020, 13(621):eaax2364. doi: 10.1126/scisignal.aax2364.
doi: 10.1126/scisignal.aax2364
URL
|
[30] |
Cockram PE, Kist M, Prakash S, et al. Ubiquitination in the regulation of inflammatory cell death and cancer[J]. Cell Death Differ, 2021, 28(2):591-605. doi: 10.1038/s41418-020-00708-5.
doi: 10.1038/s41418-020-00708-5
pmid: 33432113
|
[31] |
Ji M, Zhao Z, Li Y, et al. FBXO6-mediated RNASET2 ubiquitination and degradation governs the development of ovarian cancer[J]. Cell Death Dis, 2021, 12(4):317. doi: 10.1038/s41419-021-03580-4.
doi: 10.1038/s41419-021-03580-4
pmid: 33767133
|
[32] |
Chen L, Gao W, Sha C, et al. SIAH1-mediated RPS3 ubiquitination contributes to chemosensitivity in epithelial ovarian cancer[J]. Aging(Albany NY), 2022, 14(15):6202-6226. doi: 10.18632/aging.204211.
doi: 10.18632/aging.204211
|