
国际生殖健康/计划生育杂志 ›› 2023, Vol. 42 ›› Issue (4): 348-352.doi: 10.12280/gjszjk.20230090
• 综述 • 上一篇
收稿日期:2023-02-28
出版日期:2023-07-15
发布日期:2023-07-26
通讯作者:
应小燕
E-mail:xiaoyanying_cool@163.com
基金资助:
CAO Ying, ZHANG Dong, YING Xiao-yan(
)
Received:2023-02-28
Published:2023-07-15
Online:2023-07-26
Contact:
YING Xiao-yan
E-mail:xiaoyanying_cool@163.com
摘要:
近年卵巢癌的诊治虽已取得较大进展,但其5年生存率不足47%,积极探索新的治疗方法或新靶点十分必要。蛋白翻译后修饰(post-translational modification,PTM)是蛋白质功能调节的重要方式,通过对前体蛋白进行翻译后加工,改变蛋白质的理化性质、构象和结合能力,从而影响蛋白质的活性、稳定性和功能等方面。目前针对卵巢癌的研究主要集中在磷酸化、乙酰化、O-GlcNAc糖基化、S-棕榈酰化和泛素化等PTM,通过调节多种蛋白质的功能,调控相关信号通路或影响其下游分子的表达,影响卵巢癌细胞的增殖、侵袭、凋亡、耐药及化疗敏感性等。综述PTM在卵巢癌中的研究进展,以期为卵巢癌的精准靶向治疗提供新的理论依据。
曹颖, 张东, 应小燕. 卵巢癌中蛋白翻译后修饰的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(4): 348-352.
CAO Ying, ZHANG Dong, YING Xiao-yan. Research Progress of Post-Translational Modification in Ovarian Cancer[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 348-352.
| [1] |
Kuroki L, Guntupalli SR. Treatment of epithelial ovarian cancer[J]. BMJ, 2020, 371:m3773. doi: 10.1136/bmj.m3773.
doi: 10.1136/bmj.m3773 |
| [2] |
Júlia Š, Petr V, Radek V, et al. Ovarian tumors and genetic predisposition[J]. Ceska Gynekol, 2022, 87(3):211-216. doi: 10.48095/cccg2022211.
doi: 10.48095/cccg2022211 URL |
| [3] |
Ramraj SK, Elayapillai SP, Pelikan RC, et al. Novel ovarian cancer maintenance therapy targeted at mortalin and mutant p53[J]. Int J Cancer, 2020, 147(4):1086-1097. doi: 10.1002/ijc.32830.
doi: 10.1002/ijc.32830 pmid: 31845320 |
| [4] |
Coughlan AY, Testa G. Exploiting epigenetic dependencies in ovarian cancer therapy[J]. Int J Cancer, 2021, 149(10):1732-1743. doi: 10.1002/ijc.33727.
doi: 10.1002/ijc.33727 pmid: 34213777 |
| [5] |
Wang S, Chen FE. Small-molecule MDM2 inhibitors in clinical trials for cancer therapy[J]. Eur J Med Chem, 2022, 236:114334. doi: 10.1016/j.ejmech.2022.114334.
doi: 10.1016/j.ejmech.2022.114334 URL |
| [6] |
Wimberger P, Gerber MJ, Pfisterer J, et al. Bevacizumab May Differentially Improve Prognosis of Advanced Ovarian Cancer Patients with Low Expression of VEGF-A165b, an Antiangiogenic VEGF-A Splice Variant[J]. Clin Cancer Res, 2022, 28(21):4660-4668. doi: 10.1158/1078-0432.CCR-22-1326.
doi: 10.1158/1078-0432.CCR-22-1326 pmid: 36001383 |
| [7] |
Rubinstein MM, Makker V. Optimizing immunotherapy for gynecologic cancers[J]. Curr Opin Obstet Gynecol, 2020, 32(1):1-8. doi: 10.1097/GCO.0000000000000603.
doi: 10.1097/GCO.0000000000000603 URL |
| [8] |
Li W, Li F, Zhang X, et al. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment[J]. Signal Transduct Target Ther, 2021, 6(1):422. doi: 10.1038/s41392-021-00825-8.
doi: 10.1038/s41392-021-00825-8 |
| [9] |
张闳博, 韩伟. 头颈部鳞状细胞癌中蛋白质翻译后修饰的研究进展[J]. 中华口腔医学杂志, 2020, 55(10):789-793. doi: 10.3760/cma.j.cn112144-20200122-00025.
doi: 10.3760/cma.j.cn112144-20200122-00025 |
| [10] |
Samaržija I. Post-Translational Modifications That Drive Prostate Cancer Progression[J]. Biomolecules, 2021, 11(2):247. doi: 10.3390/biom11020247.
doi: 10.3390/biom11020247 URL |
| [11] |
Cocchiola R, Rubini E, Altieri F, et al. STAT3 Post-Translational Modifications Drive Cellular Signaling Pathways in Prostate Cancer Cells[J]. Int J Mol Sci, 2019, 20(8):1815. doi: 10.3390/ijms20081815.
doi: 10.3390/ijms20081815 |
| [12] |
Fuentes-Antrás J, Alcaraz-Sanabria AL, Morafraile EC, et al. Mapping of Genomic Vulnerabilities in the Post-Translational Ubiquitination, SUMOylation and Neddylation Machinery in Breast Cancer[J]. Cancers(Basel), 2021, 13(4):833. doi: 10.3390/cancers13040833.
doi: 10.3390/cancers13040833 |
| [13] |
Yuan M, Chen X, Sun Y, et al. ZDHHC12-mediated claudin-3 S-palmitoylation determines ovarian cancer progression[J]. Acta Pharm Sin B, 2020, 10(8):1426-1439. doi: 10.1016/j.apsb.2020.03.008.
doi: 10.1016/j.apsb.2020.03.008 URL |
| [14] |
Li J, Xu J, Li L, et al. MGAT3-mediated glycosylation of tetraspanin CD82 at asparagine 157 suppresses ovarian cancer metastasis by inhibiting the integrin signaling pathway[J]. Theranostics, 2020, 10(14):6467-6482. doi: 10.7150/thno.43865.
doi: 10.7150/thno.43865 pmid: 32483464 |
| [15] |
Cho SJ, Jeong BY, Song YS, et al. STAT3 mediates RCP-induced cancer cell invasion through the NF-κB/Slug/MT1-MMP signaling cascade[J]. Arch Pharm Res, 2022, 45(7):460-474. doi: 10.1007/s12272-022-01396-0.
doi: 10.1007/s12272-022-01396-0 pmid: 35809175 |
| [16] |
Choe SR, Kim YN, Park CG, et al. RCP induces FAK phosphorylation and ovarian cancer cell invasion with inhibition by curcumin[J]. Exp Mol Med, 2018, 50(4):1-10. doi: 10.1038/s12276-018-0078-1.
doi: 10.1038/s12276-018-0078-1 |
| [17] |
Hwang WY, Park WH, Suh DH, et al. Difluoromethylornithine Induces Apoptosis through Regulation of AP-1 Signaling via JNK Phosphorylation in Epithelial Ovarian Cancer[J]. Int J Mol Sci, 2021, 22(19):10255. doi: 10.3390/ijms221910255.
doi: 10.3390/ijms221910255 URL |
| [18] |
Zhang X, Wang L, Chen S, et al. Combined inhibition of BADSer99 phosphorylation and PARP ablates models of recurrent ovarian carcinoma[J]. Commun Med(Lond), 2022, 2:82. doi: 10.1038/s43856-022-00142-3.
doi: 10.1038/s43856-022-00142-3 |
| [19] |
Wang Y, Chiou YS, Chong QY, et al. Pharmacological Inhibition of BAD Ser99 Phosphorylation Enhances the Efficacy of Cisplatin in Ovarian Cancer by Inhibition of Cancer Stem Cell-like Behavior[J]. ACS Pharmacol Transl Sci, 2020, 3(6):1083-1099. doi: 10.1021/acsptsci.0c00064.
doi: 10.1021/acsptsci.0c00064 pmid: 33344891 |
| [20] |
Kamińska I, Bar JK. The association between p53 protein phosphorylation at serine 15, serine 20 and sensitivity of cells isolated from patients with ovarian cancer and cell lines to chemotherapy in in vitro study[J]. Pharmacol Rep, 2018, 70(3):570-576. doi: 10.1016/j.pharep.2017.12.004.
doi: S1734-1140(17)30550-9 pmid: 29684847 |
| [21] |
Shvedunova M, Akhtar A. Modulation of cellular processes by histone and non-histone protein acetylation[J]. Nat Rev Mol Cell Biol, 2022, 23(5):329-349. doi: 10.1038/s41580-021-00441-y.
doi: 10.1038/s41580-021-00441-y |
| [22] |
Liu W, Zhan Z, Zhang M, et al. KAT6A, a novel regulator of β-catenin, promotes tumorigenicity and chemoresistance in ovarian cancer by acetylating COP1[J]. Theranostics, 2021, 11(13):6278-6292. doi: 10.7150/thno.57455.
doi: 10.7150/thno.57455 pmid: 33995658 |
| [23] |
Jiang W, Jiang P, Yang R, et al. Functional role of SIRT1-induced HMGB1 expression and acetylation in migration, invasion and angiogenesis of ovarian cancer[J]. Eur Rev Med Pharmacol Sci, 2018, 22(14):4431-4439. doi: 10.26355/eurrev_201807_15494.
doi: 10.26355/eurrev_201807_15494 |
| [24] |
Lee JB, Pyo KH, Kim HR. Role and Function of O-GlcNAcylation in Cancer[J]. Cancers(Basel), 2021, 13(21):5365. doi: 10.3390/cancers13215365.
doi: 10.3390/cancers13215365 |
| [25] |
de Queiroz RM, Madan R, Chien J, et al. Changes in O-Linked N-Acetylglucosamine(O-GlcNAc) Homeostasis Activate the p53 Pathway in Ovarian Cancer Cells[J]. J Biol Chem, 2016, 291(36):18897-18914. doi: 10.1074/jbc.M116.734533.
doi: 10.1074/jbc.M116.734533 URL |
| [26] |
程慧彦. O-GlcNAc糖基化通过修饰c-Jun调控MUC1促进卵巢癌增殖的实验研究[D]. 长春: 吉林大学, 2020. doi: 10.27162/d.cnki.gllin.2020.007338.
doi: 10.27162/d.cnki.gllin.2020.007338 |
| [27] |
Shahid M, Kim M, Jin P, et al. S-Palmitoylation as a Functional Regulator of Proteins Associated with Cisplatin Resistance in Bladder Cancer[J]. Int J Biol Sci, 2020, 16(14):2490-2505. doi: 10.7150/ijbs.45640.
doi: 10.7150/ijbs.45640 pmid: 32792852 |
| [28] |
Remsberg JR, Suciu RM, Zambetti NA, et al. ABHD17 regulation of plasma membrane palmitoylation and N-Ras-dependent cancer growth[J]. Nat Chem Biol, 2021, 17(8):856-864. doi: 10.1038/s41589-021-00785-8.
doi: 10.1038/s41589-021-00785-8 pmid: 33927411 |
| [29] |
Kharbanda A, Walter DM, Gudiel AA, et al. Blocking EGFR palmitoylation suppresses PI3K signaling and mutant KRAS lung tumorigenesis[J]. Sci Signal, 2020, 13(621):eaax2364. doi: 10.1126/scisignal.aax2364.
doi: 10.1126/scisignal.aax2364 URL |
| [30] |
Cockram PE, Kist M, Prakash S, et al. Ubiquitination in the regulation of inflammatory cell death and cancer[J]. Cell Death Differ, 2021, 28(2):591-605. doi: 10.1038/s41418-020-00708-5.
doi: 10.1038/s41418-020-00708-5 pmid: 33432113 |
| [31] |
Ji M, Zhao Z, Li Y, et al. FBXO6-mediated RNASET2 ubiquitination and degradation governs the development of ovarian cancer[J]. Cell Death Dis, 2021, 12(4):317. doi: 10.1038/s41419-021-03580-4.
doi: 10.1038/s41419-021-03580-4 pmid: 33767133 |
| [32] |
Chen L, Gao W, Sha C, et al. SIAH1-mediated RPS3 ubiquitination contributes to chemosensitivity in epithelial ovarian cancer[J]. Aging(Albany NY), 2022, 14(15):6202-6226. doi: 10.18632/aging.204211.
doi: 10.18632/aging.204211 |
| [1] | 刘书杰, 李明泽, 张海燕. 卵巢中-低分化支持-间质细胞瘤一例并文献复习[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 207-211. |
| [2] | 区晓榆, 曾宇华, 陈燕芬, 谢琳玲, 曾蕾, 卢如玲. MRKH综合征合并卵巢恶性肿瘤一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 121-126. |
| [3] | 楚漫微, 陈欢欢, 王倩, 王祎玟, 李丹, 杨淑珺, 张翠莲. miR-20a在妇科常见恶性肿瘤中的作用机制[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 172-176. |
| [4] | 刘一燃, 冯睿芝, 钱云. 多囊卵巢综合征中翻译后修饰的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 38-42. |
| [5] | 高亚婷, 王芳, 马建红, 马怡彤, 刘畅. 铜死亡在妇科恶性肿瘤中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 74-78. |
| [6] | 马燕红, 展瑞. 6例卵巢Brenner瘤病理特征分析[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 446-449. |
| [7] | 安荣, 王晓慧. 卵巢原始神经外胚层肿瘤一例并文献复习[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 376-379. |
| [8] | 王敏, 安荣, 张静, 齐琦, 许飞雪. 同时性宫颈腺癌合并卵巢癌双原发癌一例并文献复习[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 387-391. |
| [9] | 葛艳, 许飞雪, 李虹维, 高明霞. 51例卵巢癌患者BRCA1/2基因突变的分析[J]. 国际生殖健康/计划生育杂志, 2023, 42(4): 277-281. |
| [10] | 王敏, 马帅, 李杰. 卵巢类固醇细胞瘤的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(4): 339-342. |
| [11] | 俞萍源, 万桃, 陈曦, 张婷婷, 杨永秀. 卵巢交界性Brenner瘤一例并文献复习[J]. 国际生殖健康/计划生育杂志, 2023, 42(2): 127-129. |
| [12] | 许阡, 成九梅. 卵巢Sertoli-Leydig细胞瘤13例临床诊治分析[J]. 国际生殖健康/计划生育, 2022, 41(4): 279-283. |
| [13] | 安亚丽, 张廷凤, 许丽, 杨永秀. 卵巢癌腹膜转移腹腔化疗的研究进展[J]. 国际生殖健康/计划生育, 2022, 41(1): 79-83. |
| [14] | 王安生, 杜媛媛, 杨阳. 卵巢未成熟畸胎瘤的诊治进展[J]. 国际生殖健康/计划生育, 2021, 40(6): 524-528. |
| [15] | 杜媛媛, 王安生, 杨阳. 卵巢透明细胞癌从耐药机制到靶向药物选择的新进展[J]. 国际生殖健康/计划生育, 2021, 40(4): 348-352. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||