[1] |
Wang Y, Zhang L, Zhou F. Cuproptosis: a new form of programmed cell death[J]. Cell Mol Immunol, 2022, 19(8):867-868. doi: 10.1038/s41423-022-00866-1.
pmid: 35459854
|
[2] |
朱洁洁, 王华. 铜诱导调节性细胞死亡的作用机制与抗肿瘤治疗的研究进展[J]. 江苏大学学报(医学版), 2022, 32(4):326-331,349. doi: 10.13312/j.issn.1671-7783.y220122.
|
[3] |
Cobine PA, Brady DC. Cuproptosis: Cellular and molecular mechanisms underlying copper-induced cell death[J]. Mol Cell, 2022, 82(10):1786-1787. doi: 10.1016/j.molcel.2022.05.001.
pmid: 35594843
|
[4] |
艾文龙, 程楠, 韩咏竹. 细胞内铜稳态的分子调控机制研究进展[J]. 安徽医药, 2013, 17(5):724-726. doi: 10.3969/j.issn.1009-6469.2013.05.002.
|
[5] |
Duan WJ, He RR. Cuproptosis: copper-induced regulated cell death[J]. Sci China Life Sci, 2022, 65(8):1680-1682. doi: 10.1007/s11427-022-2106-6.
|
[6] |
Oliveri V. Selective Targeting of Cancer Cells by Copper Ionophores: An Overview[J]. Front Mol Biosci, 2022, 9:841814. doi: 10.3389/fmolb.2022.841814.
|
[7] |
刘骏达, 钟薇薇, 鲁显福, 等. 铜死亡与铜代谢相关疾病研究进展[J]. 江苏大学学报(医学版), 2022, 32(4):318-325. doi: 10.13312/j.issn.1671-7783.y220108.
|
[8] |
Anderson NM, Mucka P, Kern JG, et al. The emerging role and targetability of the TCA cycle in cancer metabolism[J]. Protein Cell, 2018, 9(2):216-237. doi: 10.1007/s13238-017-0451-1.
pmid: 28748451
|
[9] |
Tsvetkov P, Coy S, Petrova B, et al. Copper induces cell death by targeting lipoylated TCA cycle proteins[J]. Science, 2022, 375(6586):1254-1261. doi: 10.1126/science.abf0529.
pmid: 35298263
|
[10] |
Li SR, Bu LL, Cai L. Cuproptosis: lipoylated TCA cycle proteins-mediated novel cell death pathway[J]. Signal Transduct Target Ther, 2022, 7(1):158. doi: 10.1038/s41392-022-01014-x.
|
[11] |
Tang D, Chen X, Kroemer G. Cuproptosis: a copper-triggered modality of mitochondrial cell death[J]. Cell Res, 2022, 32(5):417-418. doi: 10.1038/s41422-022-00653-7.
pmid: 35354936
|
[12] |
Qin Y, Liu Y, Xiang X, et al. Cuproptosis correlates with immunosuppressive tumor microenvironment based on pan-cancer multiomics and single-cell sequencing analysis[J]. Mol Cancer, 2023, 22(1):59. doi: 10.1186/s12943-023-01752-8.
pmid: 36959665
|
[13] |
Lukanović D, Herzog M, Kobal B, et al. The contribution of copper efflux transporters ATP7A and ATP7B to chemoresistance and personalized medicine in ovarian cancer[J]. Biomed Pharmacother, 2020, 129:110401. doi: 10.1016/j.biopha.2020.110401.
pmid: 32570116
|
[14] |
Liu H. Pan-cancer profiles of the cuproptosis gene set[J]. Am J Cancer Res, 2022, 12(8):4074-4081.
pmid: 36119826
|
[15] |
Lheureux S, Braunstein M, Oza AM. Epithelial ovarian cancer: Evolution of management in the era of precision medicine[J]. CA Cancer J Clin, 2019, 69(4):280-304. doi: 10.3322/caac.21559.
|
[16] |
Lin S, Yang H. Ovarian cancer risk according to circulating zinc and copper concentrations: A meta-analysis and Mendelian randomization study[J]. Clin Nutr, 2021, 40(4):2464-2468. doi: 10.1016/j.clnu.2020.10.011.
pmid: 33129595
|
[17] |
Sun X, Xu P, Zhang F, et al. The cuproptosis-related gene signature serves as a potential prognostic predictor for ovarian cancer using bioinformatics analysis[J]. Ann Transl Med, 2022, 10(18):1021. doi: 10.21037/atm-22-4546.
pmid: 36267774
|
[18] |
Guo J, Sun Y, Liu G. The mechanism of copper transporters in ovarian cancer cells and the prospect of cuproptosis[J]. J Inorg Biochem, 2023, 247:112324. doi: 10.1016/j.jinorgbio.2023.112324.
|
[19] |
Cai Y, He Q, Liu W, et al. Comprehensive analysis of the potential cuproptosis-related biomarker LIAS that regulates prognosis and immunotherapy of pan-cancers[J]. Front Oncol, 2022, 12:952129. doi: 10.3389/fonc.2022.952129.
|
[20] |
Zhang J, Lu M, Xu H, et al. Molecular subtypes based on cuproptosis-related genes and tumor microenvironment infiltration characterization in ovarian cancer[J]. Cancer Cell Int, 2022, 22(1):328. doi: 10.1186/s12935-022-02756-y.
pmid: 36307842
|
[21] |
Kordestani N, Rudbari HA, Fernandes AR, et al. Antiproliferative Activities of Diimine-Based Mixed Ligand Copper(Ⅱ) Complexes[J]. ACS Comb Sci, 2020, 22(2):89-99. doi: 10.1021/acscombsci.9b00202.
pmid: 31913012
|
[22] |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. doi: 10.3322/caac.21660.
|
[23] |
Zhang M, Shi M, Zhao Y. Association between serum copper levels and cervical cancer risk: a meta-analysis[J]. Biosci Rep, 2018, 38(4):BSR20180161. doi: 10.1042/BSR20180161.
|
[24] |
黄蓉. 双硫仑联合铜离子对人宫颈癌Hela细胞增殖的影响[D]. 衡阳: 南华大学, 2019.
|
[25] |
Ishida S, McCormick F, Smith-McCune K, et al. Enhancing tumor-specific uptake of the anticancer drug cisplatin with a copper chelator[J]. Cancer Cell, 2010, 17(6):574-583. doi: 10.1016/j.ccr.2010.04.011.
pmid: 20541702
|
[26] |
Weng Y, Guan S, Wang L, et al. Defective Porous Carbon Polyhedra Decorated with Copper Nanoparticles for Enhanced NIR-Driven Photothermal Cancer Therapy[J]. Small, 2020, 16(1):e1905184. doi: 10.1002/smll.201905184.
|
[27] |
Walker CA, Spirtos AN, Miller DS. Pembrolizumab plus lenvatinib combination therapy for advanced endometrial carcinoma[J]. Expert Rev Anticancer Ther, 2023, 23(4):361-368. doi: 10.1080/14737140.2023.2194634.
|
[28] |
Shan J, Geng R, Zhang Y, et al. Identification of cuproptosis-related subtypes, establishment of a prognostic model and tumor immune landscape in endometrial carcinoma[J]. Comput Biol Med, 2022, 149:105988. doi: 10.1016/j.compbiomed.2022.105988.
|
[29] |
Zhang X, Ye Z, Xiao G, et al. Prognostic signature construction and immunotherapy response analysis for Uterine Corpus Endometrial Carcinoma based on cuproptosis-related lncRNAs[J]. Comput Biol Med, 2023, 159:106905. doi: 10.1016/j.compbiomed.2023.106905.
|
[30] |
Qi S, Feng H, Li X. LncRNAs signatures associated with cuproptosis predict the prognosis of endometrial cancer[J]. Front Genet, 2023, 14:1120089. doi: 10.3389/fgene.2023.1120089.
|
[31] |
Kim KK, Abelman S, Yano N, et al. Tetrathiomolybdate inhibits mitochondrial complex IV and mediates degradation of hypoxia-inducible factor-1α in cancer cells[J]. Sci Rep, 2015, 5:14296. doi: 10.1038/srep14296.
pmid: 26469226
|
[32] |
高瑞, 唐杰, 朱炜, 等. 双硫仑靶向Wnt和AKT信号通路降低卵巢癌细胞的恶性程度及对顺铂的耐受性[J]. 深圳中西医结合杂志, 2022, 32(1):11-15. doi: 10.16458/j.cnki.1007-0893.2022.01.004.
|
[33] |
Gan Y, Liu T, Feng W, et al. Drug repositioning of disulfiram induces endometrioid epithelial ovarian cancer cell death via the both apoptosis and cuproptosis pathways[J]. Oncol Res, 2023, 31(3):333-343. doi: 10.32604/or.2023.028694.
pmid: 37305383
|