[1] |
Luo J, Tan X, Li H, et al. sncRNAs in Epididymosomes: The Contribution to Embryonic Development and Offspring Health[J]. Int J Mol Sci, 2022, 23(18):10851. doi: 10.3390/ijms231810851.
|
[2] |
Paul N, Talluri TR, Nag P, et al. Epididymosomes: A potential male fertility influencer[J]. Andrologia, 2021, 53(9):e14155. doi: 10.1111/and.14155.
|
[3] |
Barrachina F, Battistone MA, Castillo J, et al. Sperm acquire epididymis-derived proteins through epididymosomes[J]. Hum Reprod, 2022, 37(4):651-668. doi: 10.1093/humrep/deac015.
|
[4] |
Chen X, Sun Q, Zheng Y, et al. Human sperm tsRNA as potential biomarker and therapy target for male fertility[J]. Reproduction, 2021, 161(2):111-122. doi: 10.1530/REP-20-0415.
|
[5] |
Nixon B, De Iuliis GN, Hart HM, et al. Proteomic Profiling of Mouse Epididymosomes Reveals their Contributions to Post-testicular Sperm Maturation[J]. Mol Cell Proteomics, 2019, 18(Suppl 1):S91-S108. doi: 10.1074/mcp.RA118.000946.
|
[6] |
Trigg NA, Stanger SJ, Zhou W, et al. A novel role for milk fat globule-EGF factor 8 protein (MFGE8) in the mediation of mouse sperm-extracellular vesicle interactions[J]. Proteomics, 2021, 21(13/14):e2000079. doi: 10.1002/pmic.202000079.
|
[7] |
Wang H, Zhu Y, Tang C, et al. Reassessment of the Proteomic Composition and Function of Extracellular Vesicles in the Seminal Plasma[J]. Endocrinology, 2022, 163(1):bqab214. doi: 10.1210/endocr/bqab214.
|
[8] |
Ma Z, Li J, Fu L, et al. Epididymal RNase T2 contributes to astheno-teratozoospermia and intergenerational metabolic disorder through epididymosome-sperm interaction[J]. BMC Med, 2023, 21(1):453. doi: 10.1186/s12916-023-03158-1.
pmid: 37993934
|
[9] |
Candenas L, Chianese R. Exosome Composition and Seminal Plasma Proteome: A Promising Source of Biomarkers of Male Infertility[J]. Int J Mol Sci, 2020, 21(19):7022. doi: 10.3390/ijms21197022.
|
[10] |
Murdica V, Cermisoni GC, Zarovni N, et al. Proteomic analysis reveals the negative modulator of sperm function glycodelin as over-represented in semen exosomes isolated from asthenozoospermic patients[J]. Hum Reprod, 2019, 34(8):1416-1427. doi: 10.1093/humrep/dez114.
|
[11] |
Murdica V, Giacomini E, Alteri A, et al. Seminal plasma of men with severe asthenozoospermia contain exosomes that affect spermatozoa motility and capacitation[J]. Fertil Steril, 2019, 111(5):897-908.e2. doi: 10.1016/j.fertnstert.2019.01.030.
pmid: 31029245
|
[12] |
Weigel Muñoz M, Carvajal G, Curci L, et al. Relevance of CRISP proteins for epididymal physiology, fertilization, and fertility[J]. Andrology, 2019, 7(5):610-617. doi: 10.1111/andr.12638.
pmid: 31218833
|
[13] |
Gonzalez SN, Sulzyk V, Weigel Muñoz M, et al. Cysteine-Rich Secretory Proteins (CRISP) are Key Players in Mammalian Fertilization and Fertility[J]. Front Cell Dev Biol, 2021,9:800351. doi: 10.3389/fcell.2021.800351.
|
[14] |
Guo H, Chang Z, Zhang Z, et al. Extracellular ATPs produced in seminal plasma exosomes regulate boar sperm motility and mitochondrial metabolism[J]. Theriogenology, 2019, 139:113-120. doi: 10.1016/j.theriogenology.2019.08.003.
pmid: 31401476
|
[15] |
Rowlison T, Cleland TP, Ottinger MA, et al. Novel Proteomic Profiling of Epididymal Extracellular Vesicles in the Domestic Cat Reveals Proteins Related to Sequential Sperm Maturation with Differences Observed between Normospermic and Teratospermic Individuals[J]. Mol Cell Proteomics, 2020, 19(12):2090-2104. doi: 10.1074/mcp.RA120.002251.
pmid: 33008835
|
[16] |
Chen C, Zhang Z, Gu X, et al. Exosomes: New regulators of reproductive development[J]. Mater Today Bio, 2023,19:100608. doi: 10.1016/j.mtbio.2023.100608.
|
[17] |
Zhu Q, Kirby JA, Chu C, et al. Small Noncoding RNAs in Reproduction and Infertility[J]. Biomedicines, 2021, 9(12):1884. doi: 10.3390/biomedicines9121884.
|
[18] |
Nixon B, De Iuliis GN, Dun MD, et al. Profiling of epididymal small non-protein-coding RNAs[J]. Andrology, 2019, 7(5):669-680. doi: 10.1111/andr.12640.
pmid: 31020794
|
[19] |
Yang C, Zeng QX, Liu JC, et al. Role of small RNAs harbored by sperm in embryonic development and offspring phenotype[J]. Andrology, 2023, 11(4):770-782. doi: 10.1111/andr.13347.
|
[20] |
Trigg NA, Eamens AL, Nixon B. The contribution of epididymosomes to the sperm small RNA profile[J]. Reproduction, 2019, 157(6):R209-R223. doi: 10.1530/REP-18-0480.
|
[21] |
Kiani M, Salehi M, Mogheiseh A. MicroRNA expression in infertile men: its alterations and effects[J]. Zygote, 2019, 27(5):263-271. doi: 10.1017/S0967199419000340.
pmid: 31412971
|
[22] |
Chu C, Zhang YL, Yu L, et al. Epididymal small non-coding RNA studies: progress over the past decade[J]. Andrology, 2019, 7(5):681-689. doi: 10.1111/andr.12639.
pmid: 31044548
|
[23] |
Reza A, Choi YJ, Han SG, et al. Roles of microRNAs in mammalian reproduction: from the commitment of germ cells to peri-implantation embryos[J]. Biol Rev Camb Philos Soc, 2019, 94(2):415-438. doi: 10.1111/brv.12459.
pmid: 30151880
|
[24] |
Wu C, Blondin P, Vigneault C, et al. Sperm miRNAs- potential mediators of bull age and early embryo development[J]. BMC Genomics, 2020, 21(1):798. doi: 10.1186/s12864-020-07206-5.
pmid: 33198638
|
[25] |
Xie Y, Yao L, Yu X, et al. Action mechanisms and research methods of tRNA-derived small RNAs[J]. Signal Transduct Target Ther, 2020, 5(1):109. doi: 10.1038/s41392-020-00217-4.
|
[26] |
Dai P, Wang X, Gou LT, et al. A Translation-Activating Function of MIWI/piRNA during Mouse Spermiogenesis[J]. Cell, 2019, 179(7):1566-1581.e16. doi: 10.1016/j.cell.2019.11.022.
pmid: 31835033
|
[27] |
Wu PH, Fu Y, Cecchini K, et al. The evolutionarily conserved piRNA-producing locus pi6 is required for male mouse fertility[J]. Nat Genet, 2020, 52(7):728-739. doi: 10.1038/s41588-020-0657-7.
|
[28] |
Choi H, Wang Z, Dean J. Sperm acrosome overgrowth and infertility in mice lacking chromosome 18 pachytene piRNA[J]. PLoS Genet, 2021, 17(4):e1009485. doi: 10.1371/journal.pgen.1009485.
|
[29] |
Perillo G, Shibata K, Wu PH. piRNAs in sperm function and embryo viability[J]. Reproduction, 2023, 165(3):R91-R102. doi: 10.1530/REP-22-0312.
|
[30] |
Raad G, Serra F, Martin L, et al. Paternal multigenerational exposure to an obesogenic diet drives epigenetic predisposition to metabolic diseases in mice[J]. Elife, 2021,10:e61736. doi: 10.7554/eLife.61736.
|
[31] |
Chan JC, Morgan CP, Adrian Leu N, et al. Reproductive tract extracellular vesicles are sufficient to transmit intergenerational stress and program neurodevelopment[J]. Nat Commun, 2020, 11(1):1499. doi: 10.1038/s41467-020-15305-w.
pmid: 32198406
|
[32] |
Short AK, Yeshurun S, Powell R, et al. Exercise alters mouse sperm small noncoding RNAs and induces a transgenerational modification of male offspring conditioned fear and anxiety[J]. Transl Psychiatry, 2017, 7(5):e1114. doi: 10.1038/tp.2017.82.
|