国际生殖健康/计划生育 ›› 2021, Vol. 40 ›› Issue (3): 231-236.doi: 10.12280/gjszjk.20200535
收稿日期:
2020-09-15
出版日期:
2021-05-15
发布日期:
2021-05-28
通讯作者:
路英丽
E-mail:luyl@jlu.edu.cn
基金资助:
XIE Yu-xin, WANG Jing-ying, YANG Chao, JIANG Ting, CHEN Xiao-xu, LU Ying-li△()
Received:
2020-09-15
Published:
2021-05-15
Online:
2021-05-28
Contact:
LU Ying-li
E-mail:luyl@jlu.edu.cn
摘要:
胚胎着床是复杂且精密化的过程,主要由胚胎、子宫内膜及两者的交互对话共同调控。随着胚胎实验室技术的发展,胚胎质量的提高及胚胎选择体系的完善已经取得了突破性的进展,但子宫内膜容受性的评价体系及标准还未阐明。近年来,随着个体化胚胎移植(personalized embryo transfer,pET)概念的提出,子宫内膜容受性的精准评估成为焦点。国内外对于如何评估子宫内膜容受性的研究从未间断,从最初的超声及胞饮突检查到现在的各种分子标志物不断被提出,再到子宫内膜容受性阵列、子宫内膜容受性图谱及蛋白质组学、脂质组学等新技术的应用研究。综述评估子宫内膜容受性的各种指标及其临床实践应用与研究,以期为临床工作提供帮助,指导pET,提高临床妊娠率和活产率。
谢娱新, 王靖莹, 杨超, 姜婷, 陈晓旭, 路英丽. 子宫内膜容受性评估研究进展[J]. 国际生殖健康/计划生育, 2021, 40(3): 231-236.
XIE Yu-xin, WANG Jing-ying, YANG Chao, JIANG Ting, CHEN Xiao-xu, LU Ying-li. Progress in Evaluation of Endometrial Receptivity[J]. Journal of International Reproductive Health/Family Planning, 2021, 40(3): 231-236.
[1] |
Coughlan C, Ledger W, Wang Q, et al. Recurrent implantation failure: definition and management[J]. Reprod Biomed Online, 2014,28(1):14-38. doi: 10.1016/j.rbmo.2013.08.011.
doi: 10.1016/j.rbmo.2013.08.011 URL |
[2] |
Bergh PA, Navot D. The impact of embryonic development and endometrial maturity on the timing of implantation[J]. Fertil Steril, 1992,58(3):537-542. doi: 10.1016/s0015-0282(16)55259-5.
URL pmid: 1521649 |
[3] |
Franasiak JM, Forman EJ, Hong KH, et al. The nature of aneuploidy with increasing age of the female partner: a review of 15, 169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening[J]. Fertil Steril, 2014, 101(3):656-663.e1. doi: 10.1016/j.fertnstert.2013.11.004.
doi: 10.1016/j.fertnstert.2013.11.004 URL |
[4] | Ahmadi F, Akhbari F, Zamani M, et al. Value of Endometrial Echopattern at HCG Administration Day in Predicting IVF Outcome[J]. Arch Iran Med, 2017,20(2):101-104. |
[5] |
Tong R, Zhou Y, He Q, et al. Analysis of the guidance value of 3D ultrasound in evaluating endometrial receptivity for frozen-thawed embryo transfer in patients with repeated implantation failure[J]. Ann Transl Med, 2020,8(15):944. doi: 10.21037/atm-20-5463.
doi: 10.21037/atm URL |
[6] |
Yang W, Zhang T, Li Z, et al. Combined analysis of endometrial thickness and pattern in predicting clinical outcomes of frozen embryo transfer cycles with morphological good-quality blastocyst: A retrospective cohort study[J]. Medicine (Baltimore), 2018,97(2):e9577. doi: 10.1097/MD.0000000000009577.
doi: 10.1097/MD.0000000000009577 URL |
[7] | Oluborode B, Burks H, Craig LB, et al. Does the ultrasound appearance of the endometrium during treatment with assisted reproductive technologies influence pregnancy outcomes?[J]. Hum Fertil (Camb), 2020: 1-10. doi: 10.1080/14647273.2020.1757766. |
[8] |
Craciunas L, Gallos I, Chu J, et al. Conventional and modern markers of endometrial receptivity: a systematic review and meta-analysis[J]. Hum Reprod Update, 2019,25(2):202-223. doi: 10.1093/humupd/dmy044.
doi: 10.1093/humupd/dmy044 URL |
[9] |
Zhang T, Li Z, Ren X, et al. Endometrial thickness as a predictor of the reproductive outcomes in fresh and frozen embryo transfer cycles: A retrospective cohort study of 1512 IVF cycles with morphologically good-quality blastocyst[J]. Medicine (Baltimore), 2018,97(4):e9689. doi: 10.1097/MD.0000000000009689.
doi: 10.1097/MD.0000000000009689 URL |
[10] |
Elsokkary M, Eldin AB, Abdelhafez M, et al. The reproducibility of the novel utilization of five-dimensional ultrasound and power Doppler in the prediction of endometrial receptivity in intracytoplasmic sperm-injected women: a pilot prospective clinical study[J]. Arch Gynecol Obstet, 2019,299(2):551-558. doi: 10.1007/s00404-018-5001-4.
doi: 10.1007/s00404-018-5001-4 URL |
[11] |
Liu KE, Hartman M, Hartman A, et al. The impact of a thin endometrial lining on fresh and frozen-thaw IVF outcomes: an analysis of over 40 000 embryo transfers[J]. Hum Reprod, 2018,33(10):1883-1888. doi: 10.1093/humrep/dey281.
doi: 10.1093/humrep/dey281 URL |
[12] |
Kuijsters N, Methorst WG, Kortenhorst M, et al. Uterine peristalsis and fertility: current knowledge and future perspectives: a review and meta-analysis[J]. Reprod Biomed Online, 2017,35(1):50-71. doi: 10.1016/j.rbmo.2017.03.019.
doi: 10.1016/j.rbmo.2017.03.019 URL |
[13] | 梁晓燕. 辅助生殖临床技术实践与提高[M]. 北京: 人民卫生出版社, 2018: 183-186. |
[14] |
Silva Martins R, Helio Oliani A, Vaz Oliani D, et al. Subendometrial resistence and pulsatility index assessment of endometrial receptivity in assisted reproductive technology cycles[J]. Reprod Biol Endocrinol, 2019,17(1):62. doi: 10.1186/s12958-019-0507-6.
doi: 10.1186/s12958-019-0507-6 URL |
[15] |
Rizov M, Andreeva P, Dimova I. Molecular regulation and role of angiogenesis in reproduction[J]. Taiwan J Obstet Gynecol, 2017,56(2):127-132. doi: 10.1016/j.tjog.2016.06.019.
doi: 10.1016/j.tjog.2016.06.019 URL |
[16] |
Maged AM, Kamel AM, Abu-Hamila F, et al. The measurement of endometrial volume and sub-endometrial vascularity to replace the traditional endometrial thickness as predictors of in-vitro fertilization success[J]. Gynecol Endocrinol, 2019,35(11):949-954. doi: 10.1080/09513590.2019.1604660.
doi: 10.1080/09513590.2019.1604660 URL |
[17] |
Jin XY, Zhao LJ, Luo DH, et al. Pinopode score around the time of implantation is predictive of successful implantation following frozen embryo transfer in hormone replacement cycles[J]. Hum Reprod, 2017,32(12):2394-2403. doi: 10.1093/humrep/dex312.
doi: 10.1093/humrep/dex312 URL |
[18] |
Qiong Z, Jie H, Yonggang W, et al. Clinical validation of pinopode as a marker of endometrial receptivity: a randomized controlled trial[J]. Fertil Steril, 2017, 108(3):513-517.e2. doi: 10.1016/j.fertnstert.2017.07.006.
doi: 10.1016/j.fertnstert.2017.07.006 URL |
[19] | Díaz-Gimeno P, Horcajadas JA, Martínez-Conejero JA, et al. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature[J]. Fertil Steril, 2011, 95(1):50-60, 60.e1-15. doi: 10.1016/j.fertnstert.2010.04.063. |
[20] |
Simón C, Gómez C, Cabanillas S, et al. A 5-year multicentre randomized controlled trial comparing personalized, frozen and fresh blastocyst transfer in IVF[J]. Reprod Biomed Online, 2020,41(3):402-415. doi: 10.1016/j.rbmo.2020.06.002.
doi: 10.1016/j.rbmo.2020.06.002 URL |
[21] |
Enciso M, Carrascosa JP, Sarasa J, et al. Development of a new comprehensive and reliable endometrial receptivity map (ER Map/ER Grade) based on RT-qPCR gene expression analysis[J]. Hum Reprod, 2018,33(2):220-228. doi: 10.1093/humrep/dex370.
doi: 10.1093/humrep/dex370 URL |
[22] |
Szczepańska M, Wirstlein P, Luczak M, et al. Expression of HOXA-10 and HOXA-11 in the endometria of women with idiopathic infertility[J]. Folia Histochem Cytobiol, 2011,49(1):111-118. doi: 10.5603/fhc.2011.0016.
doi: 10.5603/FHC.2011.0016 URL |
[23] |
Matsuzaki S, Canis M, Darcha C, et al. HOXA-10 expression in the mid-secretory endometrium of infertile patients with either endometriosis, uterine fibromas or unexplained infertility[J]. Hum Reprod, 2009,24(12):3180-3187. doi: 10.1093/humrep/dep306.
doi: 10.1093/humrep/dep306 URL |
[24] |
Cheng J, Rosario G, Cohen TV, et al. Tissue-Specific Ablation of the LIF Receptor in the Murine Uterine Epithelium Results in Implantation Failure[J]. Endocrinology, 2017,158(6):1916-1928. doi: 10.1210/en.2017-00103.
doi: 10.1210/en.2017-00103 URL |
[25] |
Margioula-Siarkou C, Prapas Y, Petousis S, et al. LIF and LIF-R expression in the endometrium of fertile and infertile women: A prospective observational case-control study[J]. Mol Med Rep, 2016,13(6):4721-4728. doi: 10.3892/mmr.2016.5142.
doi: 10.3892/mmr.2016.5142 URL pmid: 27082016 |
[26] |
Margioula-Siarkou C, Prapas Y, Petousis S, et al. LIF endometrial expression is impaired in women with unexplained infertility while LIF-R expression in all infertility sub-groups[J]. Cytokine, 2017,96:166-172. doi: 10.1016/j.cyto.2017.04.009.
doi: S1043-4666(17)30094-7 URL pmid: 28432985 |
[27] |
Wang L, Lv S, Mao W, et al. Assessment of endometrial receptivity during implantation window in women with unexplained infertility[J]. Gynecol Endocrinol, 2020,36(10):917-921. doi: 10.1080/09513590.2020.1727433.
doi: 10.1080/09513590.2020.1727433 URL |
[28] | Chen Q, Ni Y, Han M, et al. Integrin-linked kinase improves uterine receptivity formation by activating Wnt/β-catenin signaling and up-regulating MMP-3/9 expression[J]. Am J Transl Res, 2020,12(6):3011-3022. |
[29] | Zheng CC, Hu HF, Hong P, et al. Significance of integrin-linked kinase (ILK) in tumorigenesis and its potential implication as a biomarker and therapeutic target for human cancer[J]. Am J Cancer Res, 2019,9(1):186-197. |
[30] |
Vidigal JA, Ventura A. The biological functions of miRNAs: lessons from in vivo studies[J]. Trends Cell Biol, 2015,25(3):137-147. doi: 10.1016/j.tcb.2014.11.004.
doi: 10.1016/j.tcb.2014.11.004 URL |
[31] |
Lee HA, Ahn EH, Jang HG, et al. Association Between miR-605A>G, miR-608G>C, miR-631I>D, miR-938C>T, and miR-1302-3C>T Polymorphisms and Risk of Recurrent Implantation Failure[J]. Reprod Sci, 2019,26(4):469-475. doi: 10.1177/1933719118773413.
doi: 10.1177/1933719118773413 URL |
[32] |
Balaguer N, Moreno I, Herrero M, et al. MicroRNA-30d deficiency during preconception affects endometrial receptivity by decreasing implantation rates and impairing fetal growth[J]. Am J Obstet Gynecol, 2019, 221(1):46.e1-46.e16. doi: 10.1016/j.ajog.2019.02.047.
doi: 10.1016/j.ajog.2019.02.047 URL |
[33] |
Riyanti A, Febri RR, Zakirah SC, et al. Suppressing HOXA-10 Gene Expression by MicroRNA 135b During the Window of Implantation in Infertile Women[J]. J Reprod Infertil, 2020,21(3):217-221.
pmid: 32685419 |
[34] |
Giacomini E, Makieva S, Murdica V, et al. Extracellular vesicles as a potential diagnostic tool in assisted reproduction[J]. Curr Opin Obstet Gynecol, 2020,32(3):179-184. doi: 10.1097/GCO.0000000000000621.
doi: 10.1097/GCO.0000000000000621 URL |
[35] |
Simon C, Greening DW, Bolumar D, et al. Extracellular Vesicles in Human Reproduction in Health and Disease[J]. Endocr Rev, 2018,39(3):292-332. doi: 10.1210/er.2017-00229.
doi: 10.1210/er.2017-00229 URL |
[36] | Greening DW, Nguyen HP, Elgass K, et al. Human Endometrial Exosomes Contain Hormone-Specific Cargo Modulating Trophoblast Adhesive Capacity: Insights into Endometrial-Embryo Interactions[J]. Biol Reprod, 2016,94(2):38. doi: 10.1095/biolreprod.115.134890. |
[37] |
Altmäe S, Koel M, Võsa U, et al. Meta-signature of human endometrial receptivity: a meta-analysis and validation study of transcriptomic biomarkers[J]. Sci Rep, 2017,7(1):10077. doi: 10.1038/s41598-017-10098-3.
doi: 10.1038/s41598-017-10098-3 URL |
[38] | Kasvandik S, Saarma M, Kaart T, et al. Uterine Fluid Proteins for Minimally Invasive Assessment of Endometrial Receptivity[J]. J Clin Endocrinol Metab, 2020, 105(1):dgz019. doi: 10.1210/clinem/dgz019. |
[39] |
Chan C, Virtanen C, Winegarden NA, et al. Discovery of biomarkers of endometrial receptivity through a minimally invasive approach: a validation study with implications for assisted reproduction[J]. Fertil Steril, 2013,100(3):810-817. doi: 10.1016/j.fertnstert.2013.04.047.
doi: 10.1016/j.fertnstert.2013.04.047 URL |
[40] |
Gross RW. The evolution of lipidomics through space and time[J]. Biochim Biophys Acta Mol Cell Biol Lipids, 2017,1862(8):731-739. doi: 10.1016/j.bbalip.2017.04.006.
doi: 10.1016/j.bbalip.2017.04.006 URL |
[41] |
Sordelli MS, Beltrame JS, Cella M, et al. Interaction between lysophosphatidic acid, prostaglandins and the endocannabinoid system during the window of implantation in the rat uterus[J]. PLoS One, 2012,7(9):e46059. doi: 10.1371/journal.pone.0046059.
doi: 10.1371/journal.pone.0046059 URL |
[42] |
Vilella F, Ramirez L, Berlanga O, et al. PGE2 and PGF2α concentrations in human endometrial fluid as biomarkers for embryonic implantation[J]. J Clin Endocrinol Metab, 2013,98(10):4123-4132. doi: 10.1210/jc.2013-2205.
doi: 10.1210/jc.2013-2205 URL |
[43] |
Braga D, Borges E Jr, Godoy AT, et al. Lipidomic profile as a noninvasive tool to predict endometrial receptivity[J]. Mol Reprod Dev, 2019,86(2):145-155. doi: 10.1002/mrd.23088.
doi: 10.1002/mrd.v86.2 URL |
[1] | 张睿妍, 邓涵瑜, 陈柯欣, 马梲铫, 刘悦, 丁之德. 附睾小体调节精子成熟和父系表观遗传的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 518-523. |
[2] | 谢娱新, 王瑞雪, 陈梦娜, 储继军. 膜联蛋白A家族在母胎界面及不良妊娠中的作用[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 430-434. |
[3] | 吴春蕾, 赵晓丽, 邱韵桓, 王宝娟, 董融, 李凯茜, 夏天. 结合基因芯片与单细胞转录组鉴定反复种植失败患者子宫内膜的细胞间通讯[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 265-273. |
[4] | 姜乐然, 张园, 王琳, 刁飞扬. 人类子宫内膜的单细胞组学研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 216-221. |
[5] | 闻鑫, 赵晓丽, 栾祖乾, 夏天. 母胎界面免疫代谢微环境调节胚胎着床的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 138-143. |
[6] | 朱霞, 李慧珍, 刘丹, 马天仲. 胚胎植入的相关信号通路[J]. 国际生殖健康/计划生育, 2022, 41(5): 409-413. |
[7] | 项怡宁, 冯炜炜. 胞饮突评估子宫内膜容受性的研究进展[J]. 国际生殖健康/计划生育, 2022, 41(5): 414-418. |
[8] | 王焰, 孟庆霞. 反复种植失败的临床处理策略[J]. 国际生殖健康/计划生育, 2022, 41(4): 302-307. |
[9] | 张晓轩, 翟超, 李光璨, 任春娥. 子宫内膜容受性与白血病抑制因子的相关性[J]. 国际生殖健康/计划生育, 2022, 41(4): 327-331. |
[10] | 张明玮, 漆倩荣, 谢青贞. 宫腔微生物与女性生殖健康疾病的关系[J]. 国际生殖健康/计划生育, 2022, 41(3): 214-218. |
[11] | 臧朝雯, 代彩凤, 高景悦, 邓晓惠. 胚胎反复种植失败的子宫内膜免疫因素及其研究进展[J]. 国际生殖健康/计划生育, 2022, 41(1): 68-73. |
[12] | 李洪菀菀, 杨洁琼, 张丛. 微小RNA在子宫内膜蜕膜化中的功能[J]. 国际生殖健康/计划生育, 2021, 40(6): 476-480. |
[13] | 袁静, 陈超, 张颖. 慢性子宫内膜炎对生育影响的研究进展[J]. 国际生殖健康/计划生育, 2021, 40(3): 256-259. |
[14] | 周羽西, 谢奇君, 沈嵘, 凌秀凤, 赵纯. 免疫因素在反复种植失败中的研究进展[J]. 国际生殖健康/计划生育, 2021, 40(2): 147-152. |
[15] | 张盼盼#, 努尔比亚·阿力甫#, 毛吾兰·买买提依明, 马文静, 西尔艾力·买买提, 阿地力江·伊明, 夏米西努尔·伊力克, 童卓云. 弱精子症患者精子差异表达蛋白质串联质谱标签技术筛查与生物信息学分析[J]. 国际生殖健康/计划生育, 2020, 39(5): 357-360. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||