Journal of International Reproductive Health/Family Planning ›› 2023, Vol. 42 ›› Issue (5): 424-430.doi: 10.12280/gjszjk.20230190
• Review • Previous Articles Next Articles
LIU Hong-jiang, JIANG Xiao-hua, WEI Zhao-lian()
Received:
2023-05-09
Published:
2023-09-15
Online:
2023-09-13
Contact:
WEI Zhao-lian
E-mail:weizhaolian@ahmu.edu.cn
LIU Hong-jiang, JIANG Xiao-hua, WEI Zhao-lian. The Application of Mesenchymal Stem Cells and Combined Biomaterial Scaffolds in the Treatment of Intrauterine Adhesions[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 424-430.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Dreisler E, Kjer JJ. Asherman′s syndrome: current perspectives on diagnosis and management[J]. Int J Womens Health, 2019, 11:191-198. doi: 10.2147/IJWH.S165474.
doi: 10.2147/IJWH.S165474 pmid: 30936754 |
[2] |
Li B, Zhang L, Xie Y, et al. Evaluation of pharmacokinetics and safety of a long-term estradiol-releasing stent in rat uterine[J]. Regen Ther, 2022, 21:494-501. doi: 10.1016/j.reth.2022.10.001.
doi: 10.1016/j.reth.2022.10.001 pmid: 36313395 |
[3] |
Zhu R, Duan H, Gan L, et al. Comparison of Intrauterine Suitable Balloon and Foley Balloon in the Prevention of Adhesion after Hysteroscopic Adhesiolysis[J]. Biomed Res Int, 2018, 2018:9494101. doi: 10.1155/2018/9494101.
doi: 10.1155/2018/9494101 |
[4] |
Xin L, Lin X, Pan Y, et al. A collagen scaffold loaded with human umbilical cord-derived mesenchymal stem cells facilitates endometrial regeneration and restores fertility[J]. Acta Biomater, 2019, 92:160-171. doi: 10.1016/j.actbio.2019.05.012.
doi: S1742-7061(19)30327-7 pmid: 31075515 |
[5] |
Sahin Ersoy G, Zolbin MM, Cosar E, et al. CXCL12 Promotes Stem Cell Recruitment and Uterine Repair after Injury in Asherman′s Syndrome[J]. Mol Ther Methods Clin Dev, 2017, 4:169-177. doi: 10.1016/j.omtm.2017.01.001.
doi: 10.1016/j.omtm.2017.01.001 URL |
[6] |
Chen F, Gong Y, Jiang N, et al. Transplantation of bFGF-transfected bone mesenchymal stem cells on collagen scaffolds promotes the regeneration of injured rat endometrium[J]. Am J Transl Res, 2022, 14(9):6712-6725.
pmid: 36247308 |
[7] |
Meng X, Ichim TE, Zhong J, et al. Endometrial regenerative cells: a novel stem cell population[J]. J Transl Med, 2007, 5:57. doi: 10.1186/1479-5876-5-57.
doi: 10.1186/1479-5876-5-57 pmid: 18005405 |
[8] |
Zhang L, Li Y, Guan CY, et al. Therapeutic effect of human umbilical cord-derived mesenchymal stem cells on injured rat endometrium during its chronic phase[J]. Stem Cell Res Ther, 2018, 9(1):36. doi: 10.1186/s13287-018-0777-5.
doi: 10.1186/s13287-018-0777-5 pmid: 29433563 |
[9] |
Sun D, Jiang Z, Chen Y, et al. MiR-455-5p upregulation in umbilical cord mesenchymal stem cells attenuates endometrial injury and promotes repair of damaged endometrium via Janus kinase/signal transducer and activator of transcription 3 signaling[J]. Bioengineered, 2021, 12(2):12891-12904. doi: 10.1080/21655979.2021.2006976.
doi: 10.1080/21655979.2021.2006976 pmid: 34784837 |
[10] |
Huang J, Li Q, Yuan X, et al. Intrauterine infusion of clinically graded human umbilical cord-derived mesenchymal stem cells for the treatment of poor healing after uterine injury: a phase I clinical trial[J]. Stem Cell Res Ther, 2022, 13(1):85. doi: 10.1186/s13287-022-02756-9.
doi: 10.1186/s13287-022-02756-9 pmid: 35241151 |
[11] |
Gan L, Duan H, Xu Q, et al. Human amniotic mesenchymal stromal cell transplantation improves endometrial regeneration in rodent models of intrauterine adhesions[J]. Cytotherapy, 2017, 19(5):603-616. doi: 10.1016/j.jcyt.2017.02.003.
doi: S1465-3249(17)30061-0 pmid: 28285950 |
[12] |
Li JY, Ren KK, Zhang WJ, et al. Human amniotic mesenchymal stem cells and their paracrine factors promote wound healing by inhibiting heat stress-induced skin cell apoptosis and enhancing their proliferation through activating PI3K/AKT signaling pathway[J]. Stem Cell Res Ther, 2019, 10(1):247. doi: 10.1186/s13287-019-1366-y.
doi: 10.1186/s13287-019-1366-y |
[13] |
Navas A, Magaña-Guerrero FS, Domínguez-López A, et al. Anti-Inflammatory and Anti-Fibrotic Effects of Human Amniotic Membrane Mesenchymal Stem Cells and Their Potential in Corneal Repair[J]. Stem Cells Transl Med, 2018, 7(12):906-917. doi: 10.1002/sctm.18-0042.
doi: 10.1002/sctm.18-0042 URL |
[14] |
Ding C, Li H, Wang Y, et al. Different therapeutic effects of cells derived from human amniotic membrane on premature ovarian aging depend on distinct cellular biological characteristics[J]. Stem Cell Res Ther, 2017, 8(1):173. doi: 10.1186/s13287-017-0613-3.
doi: 10.1186/s13287-017-0613-3 pmid: 28750654 |
[15] |
Yang PJ, Yuan WX, Liu J, et al. Biological characterization of human amniotic epithelial cells in a serum-free system and their safety evaluation[J]. Acta Pharmacol Sin, 2018, 39(8):1305-1316. doi: 10.1038/aps.2018.22.
doi: 10.1038/aps.2018.22 URL |
[16] |
Li B, Zhang Q, Sun J, et al. Human amniotic epithelial cells improve fertility in an intrauterine adhesion mouse model[J]. Stem Cell Res Ther, 2019, 10(1):257. doi: 10.1186/s13287-019-1368-9.
doi: 10.1186/s13287-019-1368-9 pmid: 31412924 |
[17] |
Perlee D, de Vos AF, Scicluna BP, et al. Role of tissue factor in the procoagulant and antibacterial effects of human adipose-derived mesenchymal stem cells during pneumosepsis in mice[J]. Stem Cell Res Ther, 2019, 10(1):286. doi: 10.1186/s13287-019-1391-x.
doi: 10.1186/s13287-019-1391-x pmid: 31547876 |
[18] |
Lee SY, Shin JE, Kwon H, et al. Effect of Autologous Adipose-Derived Stromal Vascular Fraction Transplantation on Endometrial Regeneration in Patients of Asherman′s Syndrome: a Pilot Study[J]. Reprod Sci, 2020, 27(2):561-568. doi: 10.1007/s43032-019-00055-y.
doi: 10.1007/s43032-019-00055-y |
[19] |
Zhang S, Li P, Yuan Z, et al. Platelet-rich plasma improves therapeutic effects of menstrual blood-derived stromal cells in rat model of intrauterine adhesion[J]. Stem Cell Res Ther, 2019, 10(1):61. doi: 10.1186/s13287-019-1155-7.
doi: 10.1186/s13287-019-1155-7 pmid: 30770774 |
[20] |
Tan J, Li P, Wang Q, et al. Autologous menstrual blood-derived stromal cells transplantation for severe Asherman′s syndrome[J]. Hum Reprod, 2016, 31(12):2723-2729. doi: 10.1093/humrep/dew235.
doi: 10.1093/humrep/dew235 URL |
[21] |
Chang QY, Zhang SW, Li PP, et al. Safety of menstrual blood-derived stromal cell transplantation in treatment of intrauterine adhesion[J]. World J Stem Cells, 2020, 12(5):368-380. doi: 10.4252/wjsc.v12.i5.368.
doi: 10.4252/wjsc.v12.i5.368 URL |
[22] |
Yao Y, Chen R, Wang G, et al. Exosomes derived from mesenchymal stem cells reverse EMT via TGF-β1/Smad pathway and promote repair of damaged endometrium[J]. Stem Cell Res Ther, 2019, 10(1):225. doi: 10.1186/s13287-019-1332-8.
doi: 10.1186/s13287-019-1332-8 pmid: 31358049 |
[23] |
Zhao S, Qi W, Zheng J, et al. Exosomes Derived from Adipose Mesenchymal Stem Cells Restore Functional Endometrium in a Rat Model of Intrauterine Adhesions[J]. Reprod Sci, 2020, 27(6):1266-1275. doi: 10.1007/s43032-019-00112-6.
doi: 10.1007/s43032-019-00112-6 pmid: 31933162 |
[24] |
Tan Q, Xia D, Ying X. miR-29a in Exosomes from Bone Marrow Mesenchymal Stem Cells Inhibit Fibrosis during Endometrial Repair of Intrauterine Adhesion[J]. Int J Stem Cells, 2020, 13(3):414-423. doi: 10.15283/ijsc20049.
doi: 10.15283/ijsc20049 pmid: 33250449 |
[25] |
Xiao B, Zhu Y, Huang J, et al. Exosomal transfer of bone marrow mesenchymal stem cell-derived miR-340 attenuates endometrial fibrosis[J]. Biol Open, 2019, 8(5):bio039958. doi: 10.1242/bio.039958.
doi: 10.1242/bio.039958 |
[26] |
Wang L, Yu C, Chang T, et al. In situ repair abilities of human umbilical cord-derived mesenchymal stem cells and autocrosslinked hyaluronic acid gel complex in rhesus monkeys with intrauterine adhesion[J]. Sci Adv, 2020, 6(21):eaba6357. doi: 10.1126/sciadv.aba6357.
doi: 10.1126/sciadv.aba6357 URL |
[27] |
Chen L, Guo L, Chen F, et al. Transplantation of menstrual blood-derived mesenchymal stem cells (MbMSCs) promotes the regeneration of mechanical injuried endometrium[J]. Am J Transl Res, 2020, 12(9):4941-4954.
pmid: 33042399 |
[28] |
Xin L, Lin X, Zhou F, et al. A scaffold laden with mesenchymal stem cell-derived exosomes for promoting endometrium regeneration and fertility restoration through macrophage immunomodulation[J]. Acta Biomater, 2020, 113:252-266. doi: 10.1016/j.actbio.2020.06.029.
doi: S1742-7061(20)30359-7 pmid: 32574858 |
[29] |
Zheng JH, Zhang JK, Kong DS, et al. Quantification of the CM-Dil-labeled human umbilical cord mesenchymal stem cells migrated to the dual injured uterus in SD rat[J]. Stem Cell Res Ther, 2020, 11(1):280. doi: 10.1186/s13287-020-01806-4.
doi: 10.1186/s13287-020-01806-4 |
[30] |
Yu J, Zhang W, Huang J, et al. Management of intrauterine adhesions using human amniotic mesenchymal stromal cells to promote endometrial regeneration and repair through Notch signalling[J]. J Cell Mol Med, 2021, 25(23):11002-11015. doi: 10.1111/jcmm.17023.
doi: 10.1111/jcmm.17023 pmid: 34724320 |
[31] |
Ong YR, Cousins FL, Yang X, et al. Bone Marrow Stem Cells Do Not Contribute to Endometrial Cell Lineages in Chimeric Mouse Models[J]. Stem Cells, 2018, 36(1):91-102. doi: 10.1002/stem.2706.
doi: 10.1002/stem.2706 pmid: 28913973 |
[32] |
Liu F, Hu S, Yang H, et al. Hyaluronic Acid Hydrogel Integrated with Mesenchymal Stem Cell-Secretome to Treat Endometrial Injury in a Rat Model of Asherman′s Syndrome[J]. Adv Healthc Mater, 2019, 8(14):e1900411. doi: 10.1002/adhm.201900411.
doi: 10.1002/adhm.201900411 |
[33] |
Corradetti B, Taraballi F, Martinez JO, et al. Hyaluronic acid coatings as a simple and efficient approach to improve MSC homing toward the site of inflammation[J]. Sci Rep, 2017, 7(1):7991. doi: 10.1038/s41598-017-08687-3.
doi: 10.1038/s41598-017-08687-3 pmid: 28801676 |
[34] |
Zhao M, Gao X, Wei J, et al. Chondrogenic differentiation of mesenchymal stem cells through cartilage matrix-inspired surface coatings[J]. Front Bioeng Biotechnol, 2022, 10:991855. doi: 10.3389/fbioe.2022.991855.
doi: 10.3389/fbioe.2022.991855 URL |
[35] |
Su N, Jiang LY, Wang X, et al. Membrane-Binding Adhesive Particulates Enhance the Viability and Paracrine Function of Mesenchymal Cells for Cell-Based Therapy[J]. Biomacromolecules, 2019, 20(2):1007-1017. doi: 10.1021/acs.biomac.8b01624.
doi: 10.1021/acs.biomac.8b01624 pmid: 30616345 |
[36] |
Zhang Y, Shi L, Lin X, et al. Unresponsive thin endometrium caused by Asherman syndrome treated with umbilical cord mesenchymal stem cells on collagen scaffolds: a pilot study[J]. Stem Cell Res Ther, 2021, 12(1):420. doi: 10.1186/s13287-021-02499-z.
doi: 10.1186/s13287-021-02499-z pmid: 34294152 |
[37] |
Cao Y, Sun H, Zhu H, et al. Allogeneic cell therapy using umbilical cord MSCs on collagen scaffolds for patients with recurrent uterine adhesion: a phase I clinical trial[J]. Stem Cell Res Ther, 2018, 9(1):192. doi: 10.1186/s13287-018-0904-3.
doi: 10.1186/s13287-018-0904-3 pmid: 29996892 |
[38] |
Zhao G, Cao Y, Zhu X, et al. Transplantation of collagen scaffold with autologous bone marrow mononuclear cells promotes functional endometrium reconstruction via downregulating ΔNp63 expression in Asherman′s syndrome[J]. Sci China Life Sci, 2017, 60(4):404-416. doi: 10.1007/s11427-016-0328-y.
doi: 10.1007/s11427-016-0328-y URL |
[39] |
Feng M, Hu S, Qin W, et al. Bioprinting of a Blue Light-Cross-Linked Biodegradable Hydrogel Encapsulating Amniotic Mesenchymal Stem Cells for Intrauterine Adhesion Prevention[J]. ACS Omega, 2021, 6(36):23067-23075. doi: 10.1021/acsomega.1c02117.
doi: 10.1021/acsomega.1c02117 pmid: 34549107 |
[40] |
Liu T, Li J, Shao Z, et al. Encapsulation of mesenchymal stem cells in chitosan/β-glycerophosphate hydrogel for seeding on a novel calcium phosphate cement scaffold[J]. Med Eng Phys, 2018, 56:9-15. doi: 10.1016/j.medengphy.2018.03.003.
doi: S1350-4533(18)30045-6 pmid: 29576458 |
[41] |
He W, Zhu X, Xin A, et al. Long-term maintenance of human endometrial epithelial stem cells and their therapeutic effects on intrauterine adhesion[J]. Cell Biosci, 2022, 12(1):175. doi: 10.1186/s13578-022-00905-4.
doi: 10.1186/s13578-022-00905-4 pmid: 36258228 |
[42] |
Zhou S, Lei Y, Wang P, et al. Human Umbilical Cord Mesenchymal Stem Cells Encapsulated with Pluronic F-127 Enhance the Regeneration and Angiogenesis of Thin Endometrium in Rat via Local IL-1β Stimulation[J]. Stem Cells Int, 2022, 2022:7819234. doi: 10.1155/2022/7819234.
doi: 10.1155/2022/7819234 |
[43] |
Rangasami VK, Nawale G, Asawa K, et al. Pluronic Micelle-Mediated Tissue Factor Silencing Enhances Hemocompatibility, Stemness, Differentiation Potential, and Paracrine Signaling of Mesenchymal Stem Cells[J]. Biomacromolecules, 2021, 22(5):1980-1989. doi: 10.1021/acs.biomac.1c00070.
doi: 10.1021/acs.biomac.1c00070 pmid: 33813822 |
[44] |
Huang J, Zhang W, Yu J, et al. Human amniotic mesenchymal stem cells combined with PPCNg facilitate injured endometrial regeneration[J]. Stem Cell Res Ther, 2022, 13(1):17. doi: 10.1186/s13287-021-02682-2.
doi: 10.1186/s13287-021-02682-2 pmid: 35022063 |
[45] |
Mi HY, Jing X, Napiwocki BN, et al. Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering[J]. J Mater Chem B, 2017, 5(22):4137-4151. doi: 10.1039/C7TB00419B.
doi: 10.1039/C7TB00419B URL |
[46] |
Xiao B, Yang W, Lei D, et al. PGS Scaffolds Promote the In Vivo Survival and Directional Differentiation of Bone Marrow Mesenchymal Stem Cells Restoring the Morphology and Function of Wounded Rat Uterus[J]. Adv Healthc Mater, 2019, 8(5):e1801455. doi: 10.1002/adhm.201801455.
doi: 10.1002/adhm.201801455 |
[47] |
Ogle ME, Doron G, Levy MJ, et al. Hydrogel Culture Surface Stiffness Modulates Mesenchymal Stromal Cell Secretome and Alters Senescence[J]. Tissue Eng Part A, 2020, 26(23/24):1259-1271. doi: 10.1089/ten.tea.2020.0030.
doi: 10.1089/ten.tea.2020.0030 URL |
[48] |
Hao X, Zhang S, Li P, et al. Amniotic membrane extract-enriched hydrogel augments the therapeutic effect of menstrual blood-derived stromal cells in a rat model of intrauterine adhesion[J]. Biomater Adv, 2022, 142:213165. doi: 10.1016/j.bioadv.2022.213165.
doi: 10.1016/j.bioadv.2022.213165 URL |
[1] | GAO Xiao-li, SU Jing, LI Zeng-yan, LI Jie. Clinical Analysis of 14 Cases of Pregnancy-Associated Hemolytic Uremic Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 458-461. |
[2] | XU Qian, CHENG Jiu-mei, AN Yuan-yuan. Clinical Analysis of 8 Cases of Vulvar Leiomyoma [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 467-470. |
[3] | ZHANG Dan-li, SHI Xue-dong, LI Jian-lei, ZHOU Li-fei, WANG Wen-yi, ZHANG Ping-ping, LI Ya-li. A Novel KMT2D Variant Causing Kabuki Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 471-474. |
[4] | SHI Hong-li, XU Li-xin, LIAN Hong-mei. A Case of Primary Endometrial Yolk Sac Tumor in A Postmenopausal Woman [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 479-484. |
[5] | LIU Si-min, WANG Jia-li, ZHANG Shi-xia, WEI Jia, YANG Yong-xiu. Dermatofibrosarcoma Protuberans of Vulva: A Case Report [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 490-493. |
[6] | TIAN Dejier, FENG Xiao-ling. Possible Application of Myo-Inositol and D-Chiro-Inositol in Treatment of Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 512-517. |
[7] | XU Qian, CHENG Jiu-mei. Clinical Analysis of 17 Cases of Cervical Lipoleiomyoma [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 390-394. |
[8] | RAO Hui, LU Jiao-lan, ZHOU Huan, LI Xiong. Mesonephric-Like Adenocarcinoma of the Endometrium Involving Cervical Interstitium: A Case Report [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 410-414. |
[9] | XU Qian, YUAN Jing, AN Yuan-yuan. Multiple Lipoleiomyoma of Uterine and Extrauterine: A Case Report [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 298-301. |
[10] | XU Xiao-yan, WANG Xiao-xuan. Diagnosis and Treatment of Three Cases of Ovarian Pregnancy Rupture [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 309-312. |
[11] | LI Dan-ping, LIAN Fang, XIANG Shan. New Progress in the Mechanism of Metformin Therapy for Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 343-347. |
[12] | LIU Shu-jie, LI Ming-ze, ZHANG Hai-yan. Modium-Low Differentiation Sertoli-Leydig Cell Tumor of the Ovary: A Case Report and Literature Review [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 207-211. |
[13] | WANG Jing, WANG Xiao-hui. Small Cell Neuroendocrine Carcinoma of the Endometrium: A Case Report and Literature Review [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 212-215. |
[14] | HE Qing-wen, LI Xi-hong. Research Progress on Sleep Disorders in Patients Receiving Assisted Reproductive Technology and Non-Pharmacological Intervention [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 234-237. |
[15] | SHI Bai-chao, CHANG Hui, WANG Yu, LU Feng-juan, WANG Kai-yue, GUAN Mu-xin, MA Liang, WU Xiao-ke. The Role of Gut Microbiota in Patients with Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 238-242. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||