国际生殖健康/计划生育 ›› 2022, Vol. 41 ›› Issue (1): 84-88.doi: 10.12280/gjszjk.20210297

• 综述 • 上一篇    

机器学习在子宫内膜异位症诊断中的应用

罗忆, 张丹丹   

  1. 150001 哈尔滨医科大学附属第一医院妇产科
  • 收稿日期:2021-07-06 出版日期:2022-01-15 发布日期:2022-02-17

Application of Machine Learning in the Diagnosis of Endometriosis

LUO Yi, ZHANG Dan-dan   

  1. Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
  • Received:2021-07-06 Published:2022-01-15 Online:2022-02-17

摘要:

机器学习是一种多学科交叉下产生的人工智能学科。在大数据时代,从数据挖掘的角度出发,应用机器学习方法,通过在繁复的数据中寻找隐含的信息与规律,是探索子宫内膜异位症(EMs)诊断和预测标准的新契机。利用机器学习挖掘EMs相关数据、构建诊断及预测模型具有可行性,但目前机器学习模型用于EMs辅助诊断尚处于研究阶段。从用于机器学习的EMs生物标志物、机器学习模型在EMs诊断中的应用和机器学习与传统统计学比较方面,讨论机器学习模型相较于传统统计学模型的应用优势,突显出机器学习在EMs诊断中应用的广阔前景。

关键词: 子宫内膜异位症, 诊断, 机器学习, 模型,统计学, 生物标记

Abstract:

Mechine learning is a new discipline of artificial intelligence with multidisciplinary integration. The machine learning methods can be used to search the hidden information and rules in complex data from the perspective of data mining in the era of big data, which is a new opportunity to explore the diagnosis and prediction standards of endometriosis (EMs). It is feasible to use machine learning to remine EMs data and build the diagnosis and prediction model. At present, the application of machine learning model in EMs auxiliary diagnosis is still at the research stage. This article discusses the application advantages of machine learning models compared to traditional statistical models from the aspects of EMs biomarkers for machine learning, the application of machine learning models in EMs diagnosis and the comparison of machine learning with traditional statistics, so as to show the broad prospects of machine learning in EMs diagnosis.

Key words: Endometriosis, Diagnosis, Machine learning, Models,statistical, Biomarkers