国际生殖健康/计划生育 ›› 2022, Vol. 41 ›› Issue (1): 84-88.doi: 10.12280/gjszjk.20210297
• 综述 • 上一篇
罗忆, 张丹丹
收稿日期:
2021-07-06
出版日期:
2022-01-15
发布日期:
2022-02-17
LUO Yi, ZHANG Dan-dan
Received:
2021-07-06
Published:
2022-01-15
Online:
2022-02-17
摘要:
机器学习是一种多学科交叉下产生的人工智能学科。在大数据时代,从数据挖掘的角度出发,应用机器学习方法,通过在繁复的数据中寻找隐含的信息与规律,是探索子宫内膜异位症(EMs)诊断和预测标准的新契机。利用机器学习挖掘EMs相关数据、构建诊断及预测模型具有可行性,但目前机器学习模型用于EMs辅助诊断尚处于研究阶段。从用于机器学习的EMs生物标志物、机器学习模型在EMs诊断中的应用和机器学习与传统统计学比较方面,讨论机器学习模型相较于传统统计学模型的应用优势,突显出机器学习在EMs诊断中应用的广阔前景。
罗忆, 张丹丹. 机器学习在子宫内膜异位症诊断中的应用[J]. 国际生殖健康/计划生育, 2022, 41(1): 84-88.
LUO Yi, ZHANG Dan-dan. Application of Machine Learning in the Diagnosis of Endometriosis[J]. Journal of International Reproductive Health/Family Planning, 2022, 41(1): 84-88.
[1] |
Hirata T, Koga K, Kai K, et al. Clinical practice guidelines for the treatment of extragenital endometriosis in Japan, 2018[J]. J Obstet Gynaecol Res, 2020, 46(12):2474-2487. doi: 10.1111/jog.14522.
doi: 10.1111/jog.14522 URL |
[2] |
Ghiasi M, Kulkarni MT, Missmer SA. Is Endometriosis More Common and More Severe Than It Was 30 Years Ago?[J]. J Minim Invasive Gynecol, 2020, 27(2):452-461. doi: 10.1016/j.jmig.2019.11.018.
doi: 10.1016/j.jmig.2019.11.018 URL |
[3] |
中国医师协会妇产科医师分会子宫内膜异位症专业委员会, 中华医学会妇产科学分会子宫内膜异位症协作组. 子宫内膜异位症长期管理中国专家共识[J]. 中华妇产科杂志, 2018, 53(12):836-841. doi: 10.3760/cma.j.issn.0529-567x.2018.12.007.
doi: 10.3760/cma.j.issn.0529-567x.2018.12.007 |
[4] |
何清, 李宁, 罗文娟, 等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能, 2014, 27(4):327-336. doi: 10.3969/j.issn.1003-6059.2014.04.007.
doi: 10.3969/j.issn.1003-6059.2014.04.007 |
[5] |
Lee KS, Ahn KH. Application of Artificial Intelligence in Early Diagnosis of Spontaneous Preterm Labor and Birth[J]. Diagnostics (Basel), 2020, 10(9):733. doi: 10.3390/diagnostics10090733.
doi: 10.3390/diagnostics10090733 |
[6] |
Kawakami E, Tabata J, Yanaihara N, et al. Application of Artificial Intelligence for Preoperative Diagnostic and Prognostic Prediction in Epithelial Ovarian Cancer Based on Blood Biomarkers[J]. Clin Cancer Res, 2019, 25(10):3006-3015. doi: 10.1158/1078-0432.CCR-18-3378.
doi: 10.1158/1078-0432.CCR-18-3378 pmid: 30979733 |
[7] |
Matta K, Vigneau E, Cariou V, et al. Associations between persistent organic pollutants and endometriosis: A multipollutant assessment using machine learning algorithms[J]. Environ Pollut, 2020, 260:114066. doi: 10.1016/j.envpol.2020.114066.
doi: 10.1016/j.envpol.2020.114066 URL |
[8] |
Matsuo K, Purushotham S, Jiang B, et al. Survival outcome prediction in cervical cancer: Cox models vs deep-learning model[J]. Am J Obstet Gynecol, 2019, 220(4):381.e1-e14. doi: 10.1016/j.ajog.2018.12.030.
doi: 10.1016/j.ajog.2018.12.030 |
[9] |
Barnett-Itzhaki Z, Elbaz M, Butterman R, et al. Machine learning vs. classic statistics for the prediction of IVF outcomes[J]. J Assist Reprod Genet, 2020, 37(10):2405-2412. doi: 10.1007/s10815-020-01908-1.
doi: 10.1007/s10815-020-01908-1 URL |
[10] |
Venkatesh KK, Strauss RA, Grotegut CA, et al. Machine Learning and Statistical Models to Predict Postpartum Hemorrhage[J]. Obstet Gynecol, 2020, 135(4):935-944. doi: 10.1097/AOG.0000000000
doi: 10.1097/AOG.0000000000003759 pmid: 32168227 |
003759.
pmid: 32168227 |
|
[11] |
Ye Y, Xiong Y, Zhou Q, et al. Comparison of Machine Learning Methods and Conventional Logistic Regressions for Predicting Gestational Diabetes Using Routine Clinical Data: A Retrospective Cohort Study[J]. J Diabetes Res, 2020, 2020:4168340. doi: 10.1155/2020/4168340.
doi: 10.1155/2020/4168340 |
[12] |
Muyldermans M, Cornillie FJ, Koninckx PR. CA125 and endometriosis[J]. Hum Reprod Update, 1995, 1(2):173-187. doi: 10.1093/humupd/1.2.173.
doi: 10.1093/humupd/1.2.173 pmid: 15726771 |
[13] |
Shen A, Xu S, Ma Y, et al. Diagnostic value of serum CA125, CA19-9 and CA15-3 in endometriosis: A meta-analysis[J]. J Int Med Res, 2015, 43(5):599-609. doi: 10.1177/0300060515583076.
doi: 10.1177/0300060515583076 URL |
[14] |
Parlatan U, Inanc MT, Ozgor BY, et al. Raman spectroscopy as a non-invasive diagnostic technique for endometriosis[J]. Sci Rep, 2019, 9(1):19795. doi: 10.1038/s41598-019-56308-y.
doi: 10.1038/s41598-019-56308-y pmid: 31875014 |
[15] |
袁家英, 张建华, 刘华. 基于智能算法的子宫内膜异位症辅助诊断模型的建立[J]. 医学信息, 2015, 28(28):53-54. doi: 10.3969/j.issn.1006-1959.2015.28.068.
doi: 10.3969/j.issn.1006-1959.2015.28.068 |
[16] |
Knific T, Fishman D, Vogler A, et al. Multiplex analysis of 40 cytokines do not allow separation between endometriosis patients and controls[J]. Sci Rep, 2019, 9(1):16738. doi: 10.1038/s41598-019-52899-8.
doi: 10.1038/s41598-019-52899-8 URL |
[17] |
Wang L, Zheng W, Yu JK, et al. Artificial neural networks combined with surface-enhanced laser desorption/ionization mass spectra distinguish endometriosis from healthy population[J]. Fertil Steril, 2007, 88(6):1700-1702. doi: 10.1016/j.fertnstert.2007.01.055.
doi: 10.1016/j.fertnstert.2007.01.055 URL |
[18] |
Wang L, Zheng W, Mu L, et al. Identifying biomarkers of endometriosis using serum protein fingerprinting and artificial neural networks[J]. Int J Gynaecol Obstet, 2008, 101(3):253-258. doi: 10.1016/j.ijgo.2008.01.018.
doi: 10.1016/j.ijgo.2008.01.018 URL |
[19] |
Wang L, Zheng W, Ding XY, et al. Identification biomarkers of eutopic endometrium in endometriosis using artificial neural networks and protein fingerprinting[J]. Fertil Steril, 2010, 93(7):2460-2462. doi: 10.1016/j.fertnstert.2009.08.061.
doi: 10.1016/j.fertnstert.2009.08.061 URL |
[20] |
Li B, Wang S, Duan H, et al. Discovery of gene module acting on ubiquitin-mediated proteolysis pathway by co-expression network analysis for endometriosis[J]. Reprod Biomed Online, 2021, 42(2):429-441. doi: 10.1016/j.rbmo.2020.10.005.
doi: 10.1016/j.rbmo.2020.10.005 URL |
[21] | Akter S, Xu D, Nagel SC, et al. GenomeForest: An Ensemble Machine Learning Classifier for Endometriosis[J]. AMIA Jt Summits Transl Sci Proc, 2020, 2020:33-42. |
[22] |
Akter S, Xu D, Nagel SC, et al. Machine Learning Classifiers for Endometriosis Using Transcriptomics and Methylomics Data[J]. Front Genet, 2019, 10:766. doi: 10.3389/fgene.2019.00766.
doi: 10.3389/fgene.2019.00766 URL |
[23] |
Moustafa S, Burn M, Mamillapalli R, et al. Accurate diagnosis of endometriosis using serum microRNAs[J]. Am J Obstet Gynecol, 2020, 223(4): 557.e1-e11. doi: 10.1016/j.ajog.2020.02.050.
doi: 10.1016/j.ajog.2020.02.050 |
[24] |
Zhu H, Bao J, Liu S, et al. Null genotypes of GSTM1 and GSTT1 and endometriosis risk: a meta-analysis of 25 case-control studies[J]. PLoS One, 2014, 9(9):e106761. doi: 10.1371/journal.pone.0106761.
doi: 10.1371/journal.pone.0106761 URL |
[25] |
Crestani A, Abdel Wahab C, Arfi A, et al. A short anogenital distance on MRI is a marker of endometriosis[J]. Hum Reprod Open, 2021, 2021(1):hoab003. doi: 10.1093/hropen/hoab003.
doi: 10.1093/hropen/hoab003 |
[26] |
Missmer SA, Chavarro JE, Malspeis S, et al. A prospective study of dietary fat consumption and endometriosis risk[J]. Hum Reprod, 2010, 25(6):1528-1535. doi: 10.1093/humrep/deq044.
doi: 10.1093/humrep/deq044 URL |
[27] |
Harris HR, Wieser F, Vitonis AF, et al. Early life abuse and risk of endometriosis[J]. Hum Reprod, 2018, 33(9):1657-1668. doi: 10.1093/humrep/dey248.
doi: 10.1093/humrep/dey248 URL |
[28] |
Bouaziz J, Mashiach R, Cohen S, et al. How Artificial Intelligence Can Improve Our Understanding of the Genes Associated with Endometriosis: Natural Language Processing of the PubMed Database[J]. Biomed Res Int, 2018, 2018:6217812. doi: 10.1155/2018/6217812.
doi: 10.1155/2018/6217812 pmid: 29750165 |
[29] |
Perrotta AR, Borrelli GM, Martins CO, et al. The Vaginal Microbiome as a Tool to Predict rASRM Stage of Disease in Endometriosis: a Pilot Study[J]. Reprod Sci, 2020, 27(4):1064-1073. doi: 10.1007/s43032-019-00113-5.
doi: 10.1007/s43032-019-00113-5 pmid: 32046455 |
[30] |
Guerriero S, Pascual M, Ajossa S, et al. Artificial intelligence (AI) in the detection of rectosigmoid deep endometriosis[J]. Eur J Obstet Gynecol Reprod Biol, 2021, 261:29-33. doi: 10.1016/j.ejogrb.2021. 04.012.
doi: 10.1016/j.ejogrb.2021.04.012 pmid: 33873085 |
[31] |
Loring M, Kabelac Z, Munir U, et al. Novel Technology to Capture Objective Data from Patients′ Recovery from Laparoscopic Endometriosis Surgery[J]. J Minim Invasive Gynecol, 2021, 28(2):325-331. doi: 10.1016/j.jmig.2020.06.011.
doi: 10.1016/j.jmig.2020.06.011 URL |
[1] | 许阡, 成九梅, 安圆圆. 外阴平滑肌瘤8例临床分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 467-470. |
[2] | 苗贺瑱, 刘佳佳, 闫宇, 马国霞, 王晓慧. 一例罕见的宫颈子宫内膜异位症[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 475-478. |
[3] | 刘思敏, 王佳丽, 张世霞, 魏佳, 杨永秀. 外阴隆突性皮肤纤维肉瘤一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 490-493. |
[4] | 许阡, 成九梅. 宫颈脂肪平滑肌瘤17例临床分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 390-394. |
[5] | 饶慧, 卢娇兰, 周欢, 李雄. 子宫内膜中肾样腺癌累及宫颈管间质一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 410-414. |
[6] | 傅婉玉, 金莎汶, 江矞颖, 李燕青. 无创产前筛查技术在罕见常染色体三体及染色体拷贝数变异的临床效果分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 279-283. |
[7] | 庄建龙, 许伟雄, 江矞颖. 全外显子组测序鉴定7q36.3微重复的胎儿多指并指畸形[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 284-288. |
[8] | 刘芙蓉, 张钏, 周秉博, 陈雪, 田芯瑗, 马盼盼, 惠玲, 郝胜菊. 甘肃地区育龄夫妇基因扩展性携带者筛查研究[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 293-297. |
[9] | 徐晓燕, 王笑璇. 卵巢妊娠破裂三例诊疗体会[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 309-312. |
[10] | 何玲, 蒯丹, 张艳芳, 田文艳, 张慧英. 青春期异常子宫出血的多维评估方法[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 338-342. |
[11] | 庄建龙, 江矞颖, 曾书红, 陈新英. FISH联合染色体核型分析明确复发性流产家系遗传病因一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 201-203. |
[12] | 王晶, 王晓慧. 子宫内膜小细胞神经内分泌癌一例并文献复习[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 212-215. |
[13] | 高朝阳, 章宁晴, 陈琼华, 吴荣锋. 环状RNA在子宫内膜异位症不孕患者卵泡颗粒细胞中的作用[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 243-248. |
[14] | 李彦林, 何银芳. 产科抗磷脂综合征诊治现状[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 254-259. |
[15] | 程诗语, 石洁, 李艳丽, 高晗. 外阴硬化性苔藓的临床研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 260-264. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||