[1] |
Pimple S, Mishra G. Cancer cervix: Epidemiology and disease burden[J]. Cytojournal, 2022, 19:21. doi: 10.25259/CMAS_03_02_2021.
doi: 10.25259/CMAS_03_02_2021
pmid: 35510109
|
[2] |
Tewari KS, Monk BJ. Evidence-Based Treatment Paradigms for Management of Invasive Cervical Carcinoma[J]. J Clin Oncol, 2019, 37(27):2472-2489. doi: 10.1200/JCO.18.02303.
doi: 10.1200/JCO.18.02303
pmid: 31403858
|
[3] |
Wu J, Zhang L, Wu S, et al. Ferroptosis: Opportunities and Challenges in Treating Endometrial Cancer[J]. Front Mol Biosci, 2022, 9:929832. doi: 10.3389/fmolb.2022.929832.
doi: 10.3389/fmolb.2022.929832
URL
|
[4] |
Xu J, Zhou F, Wang X, et al. Role of ferroptosis in pregnancy related diseases and its therapeutic potential[J]. Front Cell Dev Biol, 2023, 11:1083838. doi: 10.3389/fcell.2023.1083838.
doi: 10.3389/fcell.2023.1083838
URL
|
[5] |
裴娇娇, 黄超林, 陈蛟. 铁死亡与胎盘源性疾病的研究进展[J]. 国际生殖健康/计划生育杂志, 2022, 41(5):425-429. doi: 10.12280/gjszjk.20220245.
doi: 10.12280/gjszjk.20220245
|
[6] |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072. doi: 10.1016/j.cell.2012.03.042.
doi: 10.1016/j.cell.2012.03.042
pmid: 22632970
|
[7] |
Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2):88. doi: 10.1038/s41419-020-2298-2.
doi: 10.1038/s41419-020-2298-2
pmid: 32015325
|
[8] |
Lei G, Zhuang L, Gan B. Targeting ferroptosis as a vulnerability in cancer[J]. Nat Rev Cancer, 2022, 22(7):381-396. doi: 10.1038/s41568-022-00459-0.
doi: 10.1038/s41568-022-00459-0
pmid: 35338310
|
[9] |
Yang X, Yin F, Liu Q, et al. Ferroptosis-related genes identify tumor immune microenvironment characterization for the prediction of prognosis in cervical cancer[J]. Ann Transl Med, 2022, 10(2):123. doi: 10.21037/atm-21-6265.
doi: 10.21037/atm-21-6265
pmid: 35282071
|
[10] |
Jiang Z, Li J, Feng W, et al. A Ferroptosis-Related lncRNA Model to Enhance the Predicted Value of Cervical Cancer[J]. J Oncol, 2022, 2022:6080049. doi: 10.1155/2022/6080049.
doi: 10.1155/2022/6080049
|
[11] |
Alakkal A, Thayyullathil F, Pallichankandy S, et al. Sanguinarine Induces H2O2-Dependent Apoptosis and Ferroptosis in Human Cervical Cancer[J]. Biomedicines, 2022, 10(8):1795. doi: 10.3390/biomedicines10081795.
doi: 10.3390/biomedicines10081795
URL
|
[12] |
Wu P, Li C, Ye DM, et al. Circular RNA circEPSTI1 accelerates cervical cancer progression via miR-375/409-3P/515-5p-SLC7A11 axis[J]. Aging(Albany NY), 2021, 13(3):4663-4673. doi: 10.18632/aging.202518.
doi: 10.18632/aging.202518
|
[13] |
Zhao MY, Liu P, Sun C, et al. Propofol Augments Paclitaxel-Induced Cervical Cancer Cell Ferroptosis In Vitro[J]. Front Pharmacol, 2022, 13:816432. doi: 10.3389/fphar.2022.816432.
doi: 10.3389/fphar.2022.816432
URL
|
[14] |
Hao S, Lv J, Yang Q, et al. Identification of Key Genes and Circular RNAs in Human Gastric Cancer[J]. Med Sci Monit, 2019, 25:2488-2504. doi: 10.12659/MSM.915382.
doi: 10.12659/MSM.915382
URL
|
[15] |
Ou R, Lu S, Wang L, et al. Circular RNA circLMO1 Suppresses Cervical Cancer Growth and Metastasis by Triggering miR-4291/ACSL4-Mediated Ferroptosis[J]. Front Oncol, 2022, 12:858598. doi: 10.3389/fonc.2022.858598.
doi: 10.3389/fonc.2022.858598
URL
|
[16] |
Shan K, Feng N, Zhu D, et al. Free docosahexaenoic acid promotes ferroptotic cell death via lipoxygenase dependent and independent pathways in cancer cells[J]. Eur J Nutr, 2022, 61(8):4059-4075. doi: 10.1007/s00394-022-02940-w.
doi: 10.1007/s00394-022-02940-w
pmid: 35804267
|
[17] |
王凯莉. 基于代谢组学的冬凌草甲素抑制宫颈癌细胞增殖的分子机制研究[D]. 郑州: 郑州大学, 2021.
|
[18] |
王语晴. HPV16病毒编码circE7促进宫颈癌细胞增殖迁移、抑制铁死亡的机制研究[D]. 武汉: 武汉大学, 2022.
|
[19] |
Xiong J, Nie M, Fu C, et al. Hypoxia Enhances HIF1α Transcription Activity by Upregulating KDM4A and Mediating H3K9me3, Thus Inducing Ferroptosis Resistance in Cervical Cancer Cells[J]. Stem Cells Int, 2022, 2022:1608806. doi: 10.1155/2022/1608806.
doi: 10.1155/2022/1608806
|
[20] |
李维, 吕占云, 李道静, 等. 铁死亡与炎症反应的研究进展[J]. 中风与神经疾病杂志, 2019, 36(4):359-361.
|
[21] |
王睿, 沙仁高娃. 顺铂诱导铁死亡促进肿瘤相关巨噬细胞极化抑制宫颈癌细胞耐药性[J]. 现代肿瘤医学, 2022, 30(13):2320-2325. doi: 10.3969/j.issn.1672-4992.2022.13.005.
doi: 10.3969/j.issn.1672-4992.2022.13.005
|
[22] |
Chen X, Kang R, Kroemer G, et al. Broadening horizons: the role of ferroptosis in cancer[J]. Nat Rev Clin Oncol, 2021, 18(5):280-296. doi: 10.1038/s41571-020-00462-0.
doi: 10.1038/s41571-020-00462-0
pmid: 33514910
|
[23] |
曲虹达. 胞浆可变铁池浓度对宫颈癌放射敏感性的影响及机制研究[D]. 长春: 吉林大学, 2021.
|
[24] |
Hou J, Jiang C, Wen X, et al. ACSL4 as a Potential Target and Biomarker for Anticancer: From Molecular Mechanisms to Clinical Therapeutics[J]. Front Pharmacol, 2022, 13:949863. doi: 10.3389/fphar.2022.949863.
doi: 10.3389/fphar.2022.949863
URL
|
[25] |
Xiaofei J, Mingqing S, Miao S, et al. Oleanolic acid inhibits cervical cancer Hela cell proliferation through modulation of the ACSL4 ferroptosis signaling pathway[J]. Biochem Biophys Res Commun, 2021, 545:81-88. doi: 10.1016/j.bbrc.2021.01.028.
doi: 10.1016/j.bbrc.2021.01.028
URL
|
[26] |
Zhang Z, Hu Q, Ye S, et al. Inhibition of the PIN1-NRF2/GPX4 axis imparts sensitivity to cisplatin in cervical cancer cells[J]. Acta Biochim Biophys Sin(Shanghai), 2022, 54(9):1325-1335. doi: 10.3724/abbs.2022109.
doi: 10.3724/abbs.2022109
|
[27] |
Wang C, Zeng J, Li LJ, et al. Cdc25A inhibits autophagy-mediated ferroptosis by upregulating ErbB2 through PKM2 dephosphorylation in cervical cancer cells[J]. Cell Death Dis, 2021, 12(11):1055. doi: 10.1038/s41419-021-04342-y.
doi: 10.1038/s41419-021-04342-y
pmid: 34743185
|
[28] |
Shi YL, Liu MB, Wu HT, et al. GLTP Is a Potential Prognostic Biomarker and Correlates with Immunotherapy Efficacy in Cervical Cancer[J]. Dis Markers, 2022, 2022:9109365. doi: 10.1155/2022/9109365.
doi: 10.1155/2022/9109365
|