[1] |
Siddiqui S, Mateen S, Ahmad R, et al. A brief insight into the etiology, genetics, and immunology of polycystic ovarian syndrome (PCOS)[J]. J Assist Reprod Genet, 2022, 39(11):2439-2473. doi: 10.1007/s10815-022-02625-7.
|
[2] |
Mićić B, Djordjevic A, Veličković N, et al. AMPK Activation as a Protective Mechanism to Restrain Oxidative Stress in the Insulin-Resistant State in Skeletal Muscle of Rat Model of PCOS Subjected to Postnatal Overfeeding[J]. Biomedicines, 2023, 11(6):1586. doi: 10.3390/biomedicines11061586.
|
[3] |
王歆, 刘维英, 武晨, 等. 二甲双胍调节AMPK/SREBP-1通路及在临床中的应用进展[J]. 中国临床药理学与治疗学, 2022, 27(9):1049-1054. doi: 10.12092/j.issn.1009-2501.2022.09.012.
|
[4] |
张宸崧, 王子涵, 陈燕雯, 等. 单磷酸腺苷激活的蛋白激酶(AMPK):能量、葡萄糖感受器和代谢性疾病治疗靶标[J]. 厦门大学学报(自然科学版), 2022, 61(3):325-345. doi: 10.6043/j.issn.0438-0479.202111007.
|
[5] |
Agius L, Ford BE, Chachra SS. The Metformin Mechanism on Gluconeogenesis and AMPK Activation: The Metabolite Perspective[J]. Int J Mol Sci, 2020, 21(9):3240. doi: 10.3390/ijms21093240.
|
[6] |
Ma T, Tian X, Zhang B, et al. Low-dose metformin targets the lysosomal AMPK pathway through PEN2[J]. Nature, 2022, 603(7899):159-165. doi: 10.1038/s41586-022-04431-8.
|
[7] |
Chen M, Zhu JY, Mu WJ, et al. Cdo1-Camkk2-AMPK axis confers the protective effects of exercise against NAFLD in mice[J]. Nat Commun, 2023, 14(1):8391. doi: 10.1038/s41467-023-44242-7.
pmid: 38110408
|
[8] |
Wang L, Chen Y, Wei J, et al. Administration of nicotinamide mononucleotide improves oocyte quality of obese mice[J]. Cell Prolif, 2022, 55(11):e13303. doi: 10.1111/cpr.13303.
|
[9] |
孙文萍, 赵得雄, 王榀华, 等. TXNIP/NLRP3信号通路在PCOS-IR大鼠卵巢慢性炎症中的作用机制研究[J]. 中国免疫学杂志, 2022, 38(11):1300-1305. doi: 10.3969/j.issn.1000-484X.2022.11.004.
|
[10] |
郑高美. PCOS患者卵泡液中AMH、BMP15及TNF-α的含量与卵子质量的相关性分析[D]. 青岛: 青岛大学, 2023.
|
[11] |
Özdemir BÖ, Göçmen AY, AydoğanKırmızı D. The role of inflammation, oxidation and Cystatin-C in the pathophysiology of polycystic ovary syndrome[J]. Turk J Obstet Gynecol, 2022, 19(3):229-235. doi: 10.4274/tjod.galenos.2022.29498.
pmid: 36149277
|
[12] |
Zhou Z, Luo G, Li C, et al. Metformin induces M2 polarization via AMPK/PGC-1α/PPAR-γ pathway to improve peripheral nerve regeneration[J]. Am J Transl Res, 2023, 15(5):3778-3792.
pmid: 37303686
|
[13] |
Chen XC, Wu D, Wu HL, et al. Metformin improves renal injury of MRL/lpr lupus-prone mice via the AMPK/STAT3 pathway[J]. Lupus Sci Med, 2022, 9(1):e000611. doi: 10.1136/lupus-2021-000611.
|
[14] |
Cao B, Qin J, Pan B, et al. Oxidative Stress and Oocyte Cryopreservation: Recent Advances in Mitigation Strategies Involving Antioxidants[J]. Cells, 2022, 11(22):3573. doi: 10.3390/cells11223573.
|
[15] |
Lai Q, Xiang W, Li Q, et al. Oxidative stress in granulosa cells contributes to poor oocyte quality and IVF-ET outcomes in women with polycystic ovary syndrome[J]. Front Med, 2018, 12(5):518-524. doi: 10.1007/s11684-017-0575-y.
|
[16] |
Zhang K, Wang T, Sun GF, et al. Metformin protects against retinal ischemia/reperfusion injury through AMPK-mediated mitochondrial fusion[J]. Free Radic Biol Med, 2023, 205:47-61. doi: 10.1016/j.freeradbiomed.2023.05.019.
|
[17] |
Amani Abkenari S, Safdarian L, Amidi F, et al. Metformin improves epigenetic modification involved in oocyte growth and embryo development in polycystic ovary syndrome mice model[J]. Mol Reprod Dev, 2021, 88(12):817-829. doi: 10.1002/mrd.23537.
pmid: 34658106
|
[18] |
Huang J, Fan H, Li C, et al. Dysregulation of ferroptosis-related genes in granulosa cells associates with impaired oocyte quality in polycystic ovary syndrome[J]. Front Endocrinol(Lausanne), 2024, 15:1346842. doi: 10.3389/fendo.2024.1346842.
|
[19] |
Zhao Y, Zhao Y, Tian Y, et al. Metformin suppresses foam cell formation, inflammation and ferroptosis via the AMPK/ERK signaling pathway in ox-LDL-induced THP-1 monocytes[J]. Exp Ther Med, 2022, 24(4):636. doi: 10.3892/etm.2022.11573.
|
[20] |
Yue F, Shi Y, Wu S, et al. Metformin alleviates hepatic iron overload and ferroptosis through AMPK-ferroportin pathway in HFD-induced NAFLD[J]. iScience, 2023, 26(12):108560. doi: 10.1016/j.isci.2023.108560.
|
[21] |
Naigaonkar A, Dadachanji R, Hinduja I, et al. Altered redox status may contribute to aberrant folliculogenesis and poor reproductive outcomes in women with polycystic ovary syndrome[J]. J Assist Reprod Genet, 2021, 38(10):2609-2623. doi: 10.1007/s10815-021-02241-x.
|
[22] |
Peng Q, Chen X, Liang X, et al. Metformin improves polycystic ovary syndrome in mice by inhibiting ovarian ferroptosis[J]. Front Endocrinol(Lausanne), 2023, 14:1070264. doi: 10.3389/fendo.2023.1070264.
|
[23] |
刘冬, 黄薇. 2023多囊卵巢综合征国际循证指南的解读与思考[J]. 实用妇产科杂志, 2024, 40(2):112-115.
|
[24] |
Rosenfield RL, Bordini B. Evidence that obesity and androgens have independent and opposing effects on gonadotropin production from puberty to maturity[J]. Brain Res, 2010, 1364:186-197. doi: 10.1016/j.brainres.2010.08.088.
pmid: 20816944
|
[25] |
Miller RA, Chu Q, Xie J, et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP[J]. Nature, 2013, 494(7436):256-260. doi: 10.1038/nature11808.
|
[26] |
Wang J, Qi Z, Wu Y, et al. Discovery of IHMT-MST1-39 as a novel MST1 kinase inhibitor and AMPK activator for the treatment of diabetes mellitus[J]. Signal Transduct Target Ther, 2023, 8(1):143. doi: 10.1038/s41392-023-01352-4.
|
[27] |
Eng GS, Sheridan RA, Wyman A, et al. AMP kinase activation increases glucose uptake, decreases apoptosis, and improves pregnancy outcome in embryos exposed to high IGF-I concentrations[J]. Diabetes, 2007, 56(9):2228-2234. doi: 10.2337/db07-0074.
pmid: 17575082
|
[28] |
刘燕兰, 韦彩云, 王洁华. 健康管理模式联合二甲双胍对多囊卵巢综合征患者减重效果和妊娠率的相关性研究[J]. 黑龙江医药, 2023, 36(6):1455-1459. doi: 10.14035/j.cnki.hljyy.2023.06.076.
|
[29] |
赵文华, 任宇, 孙文芳, 等. 血清、卵泡液中炎症因子与多囊卵巢综合征的相关性研究[J]. 内蒙古医科大学学报, 2023, 45(4):387-391.
|
[30] |
Froment P, Plotton I, Giulivi C, et al. At the crossroads of fertility and metabolism: the importance of AMPK-dependent signaling in female infertility associated with hyperandrogenism[J]. Hum Reprod, 2022, 37(6):1207-1228. doi: 10.1093/humrep/deac067.
|
[31] |
王春红, 王强强, 苏亚珊, 等. 二甲双胍改善多囊卵巢综合征并激活雌性生殖干细胞[J]. 生理学报, 2022, 74(3):370-380. doi: 10.13294/j.aps.2021.0090.
|
[32] |
Osibogun O, Ogunmoroti O, Michos ED. Polycystic ovary syndrome and cardiometabolic risk: Opportunities for cardiovascular disease prevention[J]. Trends Cardiovasc Med, 2020, 30(7):399-404. doi: 10.1016/j.tcm.2019.08.010.
|
[33] |
Sun SM, Xie ZF, Zhang YM, et al. AMPK activator C24 inhibits hepatic lipogenesis and ameliorates dyslipidemia in HFHC diet-induced animal models[J]. Acta Pharmacol Sin, 2021, 42(4):585-592. doi: 10.1038/s41401-020-0472-9.
|
[34] |
Chen C, Kassan A, Castañeda D, et al. Metformin prevents vascular damage in hypertension through the AMPK/ER stress pathway[J]. Hypertens Res, 2019, 42(7):960-969. doi: 10.1038/s41440-019-0212-z.
pmid: 30664704
|
[35] |
Falzarano C, Lofton T, Osei-Ntansah A, et al. Nonalcoholic Fatty Liver Disease in Women and Girls With Polycystic Ovary Syndrome[J]. J Clin Endocrinol Metab, 2022, 107(1):258-272. doi: 10.1210/clinem/dgab658.
|
[36] |
岳芳芝. 基于铁死亡探讨二甲双胍改善NAFLD的机制[D]. 长沙: 中南大学, 2023. doi: 10.27661/d.cnki.gzhnu.2022.000502.
|
[37] |
翟昭. 二甲双胍通过AMPK/FOXO3a通路改善脓毒症致肝损伤的机制研究[D]. 赣州: 赣南医学院, 2023. doi: 10.27959/d.cnki.ggnyx.2023.000206.
|