国际生殖健康/计划生育杂志 ›› 2024, Vol. 43 ›› Issue (5): 384-389.doi: 10.12280/gjszjk.20240232

• 论著 • 上一篇    下一篇

染色体微阵列技术在孕期羊水过多遗传病因诊断中的应用

王俊育, 陈文莉, 吴荣泉, 江矞颖, 庄建龙()   

  1. 362000 福建省泉州市妇幼保健院·儿童医院产前诊断中心(王俊育,陈文莉,江矞颖,庄建龙);泉州海关综合技术服务中心(吴荣泉)
  • 收稿日期:2024-05-13 出版日期:2024-09-15 发布日期:2024-09-19
  • 通讯作者: 庄建龙 E-mail:415913261@qq.com
  • 基金资助:
    泉州市科技计划项目(2023NS068);福建省卫健委青年科研项目(2020QNB045)

Application of Chromosome Microarray Technology in Genetic Etiology Diagnosis of Fetuses with Polyhydramnios

WANG Jun-yu, CHEN Wen-li, WU Rong-quan, JIANG Yu-ying, ZHUANG Jian-long()   

  1. Prenatal Diagnosis Center, Quanzhou Women′s and Children′s Hospital, Quanzhou 362000, Fujian Province, China (WANG Jun-yu, CHEN Wen-li, JIANG Yu-ying, ZHUANG Jian-long); Comprehensive Technology Service Center of Quanzhou Customs, Quanzhou 362000, Fujian Province, China (WU Rong-quan)
  • Received:2024-05-13 Published:2024-09-15 Online:2024-09-19
  • Contact: ZHUANG Jian-long E-mail:415913261@qq.com

摘要:

目的: 利用染色体微阵列技术(chromosomal microarray analysis,CMA)分析羊水过多的遗传病因。方法: 收集2017年1月—2023年4月泉州市妇幼保健院·儿童医院产前超声提示羊水过多的病例共112例。所有纳入研究病例均行染色体核型分析及CMA检测。并根据超声检测结果进行分组研究,其中单纯性羊水过多组共16例,羊水过多合并超声结构异常组27例,羊水过多合并超声软指标异常组69例。结果: 染色体核型分析共检出4例染色体非整倍体、1例非整倍体染色体嵌合和1例染色体结构异常嵌合,异常检出率为5.36%(6/112)。CMA分析检出了染色体核型分析检出的所有染色体变异,同时检出4例致病性或可能致病性拷贝数变异,额外检出率为3.57%(4/112)。此外,单纯性羊水过多组、合并超声软指标异常组和合并超声结构异常组间染色体异常检出率差异无统计学意义(P=0.571)。结论: 羊水过多可能与胎儿染色体异常有关,染色体核型分析联合CMA技术有益于检出更多致病性拷贝数变异。因此,羊水过多胎儿的遗传病因分析及预后评估中建议应用染色体核型分析联合CMA检测。

关键词: 羊水过多, 染色体, 微阵列分析, 核型分析, DNA拷贝数变异

Abstract:

Objective: To explore the genetic diagnosis of fetuses with polyhydramnios using chromosomal microarray analysis (CMA). Methods: A total of 112 cases of the polyhydramnios diagnosed by prenatal ultrasound at Quanzhou Women′s and Children′s Hospital from January 2017 to April 2023 were collected. All of the enrolled subjects underwent chromosomal karyotype and CMA analysis. According to the results of ultrasound, the subjects were divided into three groups, the isolated polyhydramnios group (16 cases), the group of polyhydramnios with ultrasound structural abnormalities (27 cases), and the group of polyhydramnios with abnormal ultrasound soft markers (69 cases). Results: Chromosome karyotype analysis found 4 cases of chromosomal aneuploidy, 1 case of aneuploid chromosomal chimerism, and 1 case of chromosomal structural abnormality chimerism, with an abnormal detection rate of 5.36% (6/112). CMA detected all chromosomal abnormalities, and 4 additional cases of pathogenic or likely pathogenic copy number variants, with an additional detection rate of 3.57% (4/112). In addition, there was no statistical difference in the positive detection rate among three groups (P=0.571). Conclusions: Pregnancy with polyhydramnios may be related to fetal chromosomal abnormalities. The chromosome karyotype analysis combined with CMA technique is beneficial to detect more pathogenic copy number variants. Therefore, the chromosome karyotype analysis combined with CMA detection can be recommended in the genetic etiology analysis and prognosis evaluation of fetuses with polyhydramnios.

Key words: Polyhydramnios, Chromosomes, Microarray analysis, Karyotyping, DNA copy number variations