[1] |
Llarena N, Hine C. Reproductive Longevity and Aging: Geroscience Approaches to Maintain Long-Term Ovarian Fitness[J]. J Gerontol A Biol Sci Med Sci, 2021, 76(9):1551-1560. doi: 10.1093/gerona/glaa204.
|
[2] |
Mikwar M, MacFarlane AJ, Marchetti F. Mechanisms of oocyte aneuploidy associated with advanced maternal age[J]. Mutat Res Rev Mutat Res, 2020, 785:108320. doi: 10.1016/j.mrrev.2020.108320.
|
[3] |
Rizzo M, du Preez N, Ducheyne KD, et al. The horse as a natural model to study reproductive aging-induced aneuploidy and weakened centromeric cohesion in oocytes[J]. Aging(Albany NY), 2020, 12(21):22220-22232. doi: 10.18632/aging.104159.
|
[4] |
Ma JY, Li S, Chen LN, et al. Why is oocyte aneuploidy increased with maternal aging?[J]. J Genet Genomics, 2020, 47(11):659-671. doi: 10.1016/j.jgg.2020.04.003.
|
[5] |
Charalambous C, Webster A, Schuh M. Aneuploidy in mammalian oocytes and the impact of maternal ageing[J]. Nat Rev Mol Cell Biol, 2023, 24(1):27-44. doi: 10.1038/s41580-022-00517-3.
|
[6] |
Peters AE, Mihalas BP, Bromfield EG, et al. Autophagy in Female Fertility: A Role in Oxidative Stress and Aging[J]. Antioxid Redox Signal, 2020, 32(8):550-568. doi: 10.1089/ars.2019.7986.
|
[7] |
Wang L, Tang J, Wang L, et al. Oxidative stress in oocyte aging and female reproduction[J]. J Cell Physiol, 2021, 236(12):7966-7983. doi: 10.1002/jcp.30468.
pmid: 34121193
|
[8] |
Zhang T, Xi Q, Wang D, et al. Mitochondrial dysfunction and endoplasmic reticulum stress involved in oocyte aging: an analysis using single-cell RNA-sequencing of mouse oocytes[J]. J Ovarian Res, 2019, 12(1):53. doi: 10.1186/s13048-019-0529-x.
pmid: 31176373
|
[9] |
Wang H, Xu J, Li H, et al. Alpha-ketoglutarate supplementation ameliorates ovarian reserve and oocyte quality decline with aging in mice[J]. Mol Cell Endocrinol, 2023, 571:111935. doi: 10.1016/j.mce.2023.111935.
|
[10] |
Al-Zubaidi U, Adhikari D, Cinar O, et al. Mitochondria-targeted therapeutics, MitoQ and BGP-15, reverse aging-associated meiotic spindle defects in mouse and human oocytes[J]. Hum Reprod, 2021, 36(3):771-784. doi: 10.1093/humrep/deaa300.
|
[11] |
Wu T, Dong J, Fu J, et al. The mechanism of acentrosomal spindle assembly in human oocytes[J]. Science, 2022, 378(6621):eabq7361. doi: 10.1126/science.abq7361.
|
[12] |
Gao W, Zhang C, Li B, et al. Azoxystrobin exposure impairs meiotic maturation by disturbing spindle formation in mouse oocytes[J]. Front Cell Dev Biol, 2022, 10:1053654. doi: 10.3389/fcell.2022.1053654.
|
[13] |
Rizzo M, Stout T, Cristarella S, et al. Compromised MPS1 Activity Induces Multipolar Spindle Formation in Oocytes From Aged Mares: Establishing the Horse as a Natural Animal Model to Study Age-Induced Oocyte Meiotic Spindle Instability[J]. Front Cell Dev Biol, 2021, 9:657366. doi: 10.3389/fcell.2021.657366.
|
[14] |
Ju JQ, Li XH, Pan MH, et al. Mps1 controls spindle assembly, SAC, and DNA repair in the first cleavage of mouse early embryos[J]. J Cell Biochem, 2021, 122(2):290-300. doi: 10.1002/jcb.29858.
|
[15] |
Kasai S, Shimizu S, Tatara Y, et al. Regulation of Nrf2 by Mitochondrial Reactive Oxygen Species in Physiology and Pathology[J]. Biomolecules, 2020, 10(2):320. doi: 10.3390/biom10020320.
|
[16] |
Li XH, Li WJ, Ju JQ, et al. CHK2 is essential for spindle assembly and DNA repair during the first cleavage of mouse embryos[J]. Aging(Albany NY), 2020, 12(11):10415-10426. doi: 10.18632/aging.103267.
|
[17] |
Kwon J, Lee S, Kim YN, et al. Deacetylation of CHK2 by SIRT1 protects cells from oxidative stress-dependent DNA damage response[J]. Exp Mol Med, 2019, 51(3):1-9. doi: 10.1038/s12276-019-0232-4.
pmid: 30902968
|
[18] |
Yatskevich S, Kroonen JS, Alfieri C, et al. Molecular mechanisms of APC/C release from spindle assembly checkpoint inhibition by APC/C SUMOylation[J]. Cell Rep, 2021, 34(13):108929. doi: 10.1016/j.celrep.2021.108929.
|
[19] |
Marston AL, Wassmann K. Multiple Duties for Spindle Assembly Checkpoint Kinases in Meiosis[J]. Front Cell Dev Biol, 2017, 5:109. doi: 10.3389/fcell.2017.00109.
pmid: 29322045
|
[20] |
Blengini CS, Nguyen AL, Aboelenain M, et al. Age-dependent integrity of the meiotic spindle assembly checkpoint in females requires Aurora kinase B[J]. Aging Cell, 2021, 20(11):e13489. doi: 10.1111/acel.13489.
|
[21] |
Chowdhury M, Wang SW, Suen CS, et al. JAK2-CHK2 signaling safeguards the integrity of the mitotic spindle assembly checkpoint and genome stability[J]. Cell Death Dis, 2022, 13(7):619. doi: 10.1038/s41419-022-05077-0.
pmid: 35851582
|
[22] |
Riris S, Webster P, Homer H. Digital multiplexed mRNA analysis of functionally important genes in single human oocytes and correlation of changes in transcript levels with oocyte protein expression[J]. Fertil Steril, 2014, 101(3):857-864. doi: 10.1016/j.fertnstert.2013.11.125.
pmid: 24444598
|
[23] |
Kordowitzki P. Oxidative Stress Induces Telomere Dysfunction and Shortening in Human Oocytes of Advanced Age Donors[J]. Cells, 2021, 10(8):1866. doi: 10.3390/cells10081866.
|
[24] |
Yu TN, Cheng EH, Tsai HN, et al. Assessment of Telomere Length and Mitochondrial DNA Copy Number in Granulosa Cells as Predictors of Aneuploidy Rate in Young Patients[J]. J Clin Med, 2022, 11(7):1824. doi: 10.3390/jcm11071824.
|
[25] |
Lin J, Epel E. Stress and telomere shortening: Insights from cellular mechanisms[J]. Ageing Res Rev, 2022, 73:101507. doi: 10.1016/j.arr.2021.101507.
|
[26] |
Min S, Kwon SM, Hong J, et al. Mitoribosomal Deregulation Drives Senescence via TPP1-Mediated Telomere Deprotection[J]. Cells, 2022, 11(13):2079. doi: 10.3390/cells11132079.
|
[27] |
Jeon HJ, Oh JS. TRF1 Depletion Reveals Mutual Regulation Between Telomeres, Kinetochores, and Inner Centromeres in Mouse Oocytes[J]. Front Cell Dev Biol, 2021, 9:749116. doi: 10.3389/fcell.2021.749116.
|
[28] |
Jeon HJ, Kang M, Kim JS, et al. TCTP overexpression reverses age-associated telomere attrition by upregulating telomerase activity in mouse oocytes[J]. J Cell Physiol, 2022, 237(1):833-845. doi: 10.1002/jcp.30557.
|
[29] |
Yun Y, Lee S, So C, et al. Oocyte Development and Quality in Young and Old Mice following Exposure to Atrazine[J]. Environ Health Perspect, 2022, 130(11):117007. doi: 10.1289/EHP11343.
|
[30] |
Shimoi G, Wakabayashi R, Ishikawa R, et al. Effects of post-ovulatory aging on centromeric cohesin protection in murine MⅡ oocytes[J]. Reprod Med Biol, 2022, 21(1):10.1002/rmb2.12433. doi: 10.1002/rmb2.12433.
|
[31] |
Perkins AT, Das TM, Panzera LC, et al. Oxidative stress in oocytes during midprophase induces premature loss of cohesion and chromosome segregation errors[J]. Proc Natl Acad Sci U S A, 2016, 113(44):E6823-E6830. doi: 10.1073/pnas.1612047113.
|
[32] |
Ma L, Cai L, Hu M, et al. Coenzyme Q10 supplementation of human oocyte in vitro maturation reduces postmeiotic aneuploidies[J]. Fertil Steril, 2020, 114(2):331-337. doi: 10.1016/j.fertnstert.2020.04.002.
|
[33] |
Zhang H, Li C, Wen D, et al. Melatonin improves the quality of maternally aged oocytes by maintaining intercellular communication and antioxidant metabolite supply[J]. Redox Biol, 2022, 49:102215. doi: 10.1016/j.redox.2021.102215.
|
[34] |
Miao Y, Cui Z, Gao Q, et al. Nicotinamide Mononucleotide Supplementation Reverses the Declining Quality of Maternally Aged Oocytes[J]. Cell Rep, 2020, 32(5):107987. doi: 10.1016/j.celrep.2020.107987.
|
[35] |
Qu J, Qin L, Guo J, et al. Near-infrared fluorophore IR-61 improves the quality of oocytes in aged mice via mitochondrial protection[J]. Biomed Pharmacother, 2023, 162:114571. doi: 10.1016/j.biopha.2023.114571.
|
[36] |
Li C, Zhang H, Wu H, et al. Intermittent fasting reverses the declining quality of aged oocytes[J]. Free Radic Biol Med, 2023, 195:74-88. doi: 10.1016/j.freeradbiomed.2022.12.084.
|