| [1] |
Carrageta DF, Pereira SC, Ferreira R, et al. Signatures of metabolic diseases on spermatogenesis and testicular metabolism[J]. Nat Rev Urol, 2024, 21(8):477-494. doi: 10.1038/s41585-024-00866-y.
|
| [2] |
Salvio G, Ciarloni A, Cutini M, et al. Metabolic Syndrome and Male Fertility: Beyond Heart Consequences of a Complex Cardiometabolic Endocrinopathy[J]. Int J Mol Sci, 2022, 23(10):5497. doi: 10.3390/ijms23105497.
|
| [3] |
Wang C, Mbizvo M, Festin MP, et al. Evolution of the WHO "Semen" processing manual from the first (1980) to the sixth edition (2021)[J]. Fertil Steril, 2022, 117(2):237-245. doi: 10.1016/j.fertnstert.2021.11.037.
pmid: 34996596
|
| [4] |
Wang L, Zhou B, Zhao Z, et al. Body-mass index and obesity in urban and rural China: findings from consecutive nationally representative surveys during 2004-18[J]. Lancet, 2021, 398(10294):53-63. doi: 10.1016/S0140-6736(21)00798-4.
pmid: 34217401
|
| [5] |
中国居民营养与慢性病状况报告(2020年)[J]. 营养学报, 2020, 42(6):521.
|
| [6] |
Ammar O, Mehdi M, Muratori M. Teratozoospermia: Its association with sperm DNA defects, apoptotic alterations, and oxidative stress[J]. Andrology, 2020, 8(5):1095-1106. doi: 10.1111/andr.12778.
pmid: 32096605
|
| [7] |
Atmoko W, Savira M, Shah R, et al. Isolated teratozoospermia: revisiting its relevance in male infertility: a narrative review[J]. Transl Androl Urol, 2024, 13(2):260-273. doi: 10.21037/tau-23-397.
pmid: 38481866
|
| [8] |
Zhang Z, Chen H, Li Q. High-fat diet led to testicular inflammation and ferroptosis via dysbiosis of gut microbes[J]. Int Immunopharmacol, 2024, 142(Pt B):113235. doi: 10.1016/j.intimp.2024.113235.
|
| [9] |
Funes A, Saez Lancellotti TE, Santillan LD, et al. A chronic high-fat diet causes sperm head alterations in C57BL/6J mice[J]. Heliyon, 2019, 5(11):e02868. doi: 10.1016/j.heliyon.2019.e02868.
|
| [10] |
Qi X, Guan Q, Zhang W, et al. The time-dependent adverse effects of a high-fat diet on sperm parameters[J]. Adv Clin Exp Med, 2023, 32(8):889-900. doi: 10.17219/acem/159090.
pmid: 36994685
|
| [11] |
Zhang M, Zhang J, Cui Y, et al. Predictive power of lipid-related indicators for testosterone deficiency: a comparative analysis, NHANES 2011-2016[J]. Int Urol Nephrol, 2024, 56(6):1825-1833. doi: 10.1007/s11255-023-03935-0.
|
| [12] |
Fathy MA, Alsemeh AE, Habib MA, et al. Liraglutide ameliorates diabetic-induced testicular dysfunction in male rats: role of GLP-1/Kiss1/GnRH and TGF-β/Smad signaling pathways[J]. Front Pharmacol, 2023,14:1224985. doi: 10.3389/fphar.2023.1224985.
|
| [13] |
Martins AD, Monteiro MP, Silva BM, et al. Metabolic dynamics of human Sertoli cells are differentially modulated by physiological and pharmacological concentrations of GLP-1[J]. Toxicol Appl Pharmacol, 2019, 362:1-8. doi: 10.1016/j.taap.2018.10.009.
|
| [14] |
Varnum AA, Pozzi E, Deebel NA, et al. Impact of GLP-1 Agonists on Male Reproductive Health-A Narrative Review[J]. Medicina (Kaunas), 2023, 60(1):50. doi: 10.3390/medicina60010050.
|
| [15] |
Skoracka K, Hryhorowicz S, Schulz P, et al. The role of leptin and ghrelin in the regulation of appetite in obesity[J]. Peptides, 2025,186:171367. doi: 10.1016/j.peptides.2025.171367.
|
| [16] |
Hedegaard MA, Holst B. The Complex Signaling Pathways of the Ghrelin Receptor[J]. Endocrinology, 2020, 161(4):bqaa020. doi: 10.1210/endocr/bqaa020.
|
| [17] |
Belén Poretti M, Bianconi S, Luque E, et al. Role of the hypothalamus in ghrelin effects on reproduction: sperm function and sexual behavior in male mice[J]. Reproduction, 2023, 165(1):123-134. doi: 10.1530/REP-22-0098.
|
| [18] |
Tang P, Wang J, Tang X, et al. Insulin-like growth factor 2 in spermatogenesis dysfunction (Review)[J]. Mol Med Rep, 2025, 31(5):129. doi: 10.3892/mmr.2025.13494.
|
| [19] |
George BT, Jhancy M, Dube R, et al. The Molecular Basis of Male Infertility in Obesity: A Literature Review[J]. Int J Mol Sci, 2023, 25(1):179. doi: 10.3390/ijms25010179.
|
| [20] |
AbbasiHormozi S, Kouhkan A, Shahverdi A, et al. How much obesity and diabetes do impair male fertility?[J]. Reprod Biol Endocrinol, 2023, 21(1):48. doi: 10.1186/s12958-022-01034-w.
|
| [21] |
Martins FF, Amarante M, Oliveira DS, et al. Obesity, White Adipose Tissue, and Adipokines Signaling in Male Reproduction[J]. Mol Nutr Food Res, 2025, 69(10):e70054. doi: 10.1002/mnfr.70054.
|
| [22] |
Mo Y, Liang F, Mehmood A, et al. Leptin Levels in Serum or Semen and Its Association with Male Infertility: A Meta-Analysis with 1138 Cases[J]. Int J Endocrinol, 2022,2022:9462683. doi: 10.1155/2022/9462683.
|
| [23] |
Di Nisio A, De Toni L, Sabovic I, et al. Lipidomic Profile of Human Sperm Membrane Identifies a Clustering of Lipids Associated with Semen Quality and Function[J]. Int J Mol Sci, 2023, 25(1):297. doi: 10.3390/ijms25010297.
|
| [24] |
Samavat J, Natali I, Degl′Innocenti S, et al. Acrosome reaction is impaired in spermatozoa of obese men: a preliminary study[J]. Fertil Steril, 2014, 102(5):1274-1281.e2. doi: 10.1016/j.fertnstert.2014.07.1248.
pmid: 25226854
|
| [25] |
Hart NR. A theoretical model of dietary lipid variance as the origin of primary ciliary dysfunction in preeclampsia[J]. Front Mol Biosci, 2023,10:1173030. doi: 10.3389/fmolb.2023.1173030.
|
| [26] |
Simón L, Funes AK, Yapur MA, et al. Manchette-acrosome disorders during spermiogenesis and low efficiency of seminiferous tubules in hypercholesterolemic rabbit model[J]. PLoS One, 2017, 12(2):e0172994. doi: 10.1371/journal.pone.0172994.
|
| [27] |
Gao T, Liu Y, Li J, et al. Function of manchette and intra-manchette transport in spermatogenesis and male fertility[J]. Cell Commun Signal, 2025, 23(1):250. doi: 10.1186/s12964-025-02213-z.
|
| [28] |
Garcia-Oliveros LN, Arruda RP, Batissaco L, et al. Chronological characterization of sperm morpho-functional damage and recovery after testicular heat stress in Nellore bulls[J]. J Therm Biol, 2022,106:103237. doi: 10.1016/j.jtherbio.2022.103237.
|
| [29] |
Dutta S, Sengupta P, Slama P, et al. Oxidative Stress, Testicular Inflammatory Pathways, and Male Reproduction[J]. Int J Mol Sci, 2021, 22(18):10043. doi: 10.3390/ijms221810043.
|
| [30] |
Chen Q, Li L, Zhao J, et al. Graphene oxide had adverse effects on sperm motility and morphology through oxidative stress[J]. Toxicol In Vitro, 2023,92:105653. doi: 10.1016/j.tiv.2023.105653.
|
| [31] |
Pereira SC, Martins AD, Monteiro MP, et al. Expression of obesity-related genes in human spermatozoa affects the outcomes of reproductive treatments[J]. F S Sci, 2021, 2(2):164-175. doi: 10.1016/j.xfss.2021.03.004.
|
| [32] |
Tomic M, Bolha L, Pizem J, et al. Association between Sperm Morphology and Altered Sperm microRNA Expression[J]. Biology (Basel), 2022, 11(11):1671. doi: 10.3390/biology11111671.
|
| [33] |
Saez Lancellotti TE, Avena MV, Funes AK, et al. Exploring the impact of lipid stress on sperm cytoskeleton: insights and prospects[J]. Nat Rev Urol, 2025, 22(5):294-312. doi: 10.1038/s41585-024-00952-1.
|
| [34] |
Funes AK, Avena MV, Ibañez J, et al. Extra-virgin olive oil ameliorates high-fat diet-induced seminal and testicular disorders by modulating the cholesterol pathway[J]. Andrology, 2023, 11(6):1203-1217. doi: 10.1111/andr.13398.
|
| [35] |
Crisóstomo L, Videira RA, Jarak I, et al. Diet during early life defines testicular lipid content and sperm quality in adulthood[J]. Am J Physiol Endocrinol Metab, 2020, 319(6):E1061-E1073. doi: 10.1152/ajpendo.00235.2020.
|
| [36] |
Su L, Qu H, Cao Y, et al. Effect of Antioxidants on Sperm Quality Parameters in Subfertile Men: A Systematic Review and Network Meta-Analysis of Randomized Controlled Trials[J]. Adv Nutr, 2022, 13(2):586-594. doi: 10.1093/advances/nmab127.
|
| [37] |
Salvio G, Ciarloni A, Ambo N, et al. Effects of glucagon-like peptide 1 receptor agonists on testicular dysfunction: A systematic review and meta-analysis[J]. Andrology, 2025, 13(8):2022-2034. doi: 10.1111/andr.70022.
|