| [1] |
Piñol-Roma S, Choi YD, Matunis MJ, et al. Immunopurification of heterogeneous nuclear ribonucleoprotein particles reveals an assortment of RNA-binding proteins[J]. Genes Dev, 1988, 2(2):215-227. doi: 10.1101/gad.2.2.215.
|
| [2] |
Dreyfuss G. RNA-binding proteins in disease etiology: fragile X syndrome and spinal muscular atrophy[J]. RNA, 2025, 31(3):277-283. doi: 10.1261/rna.080353.124.
pmid: 39694825
|
| [3] |
Balasubramanian S, Roy I, Appadurai R, et al. The ribonucleoprotein hnRNPA1 mediates binding to RNA and DNA telomeric G-quadruplexes through an RGG-rich region[J]. J Biol Chem, 2025, 301(5):108491. doi: 10.1016/j.jbc.2025.108491.
|
| [4] |
Liu Y, Abula A, Xiao H, et al. Structural Insight Into hnRNP A2/B1 Homodimerization and DNA Recognition[J]. J Mol Biol, 2023, 435(3):167920. doi: 10.1016/j.jmb.2022.167920.
|
| [5] |
Zhang Z, Wu T, Sang Q, et al. Human oocyte quality and reproductive health[J]. Sci Bull(Beijing), 2025, 70(14):2365-2376. doi: 10.1016/j.scib.2025.04.045.
|
| [6] |
Ducreux B, Ferreux L, Patrat C, et al. Overview of Gene Expression Dynamics during Human Oogenesis/Folliculogenesis[J]. Int J Mol Sci, 2023, 25(1):33. doi: 10.3390/ijms25010033.
|
| [7] |
Liu Y, Sun Z, Gui D, et al. RNA Modification in Metabolism[J]. MedComm (2020),2025, 6(3):e70135. doi: 10.1002/mco2.70135.
|
| [8] |
Qiu L, Wu S, Zhang L, et al. The biological roles and molecular mechanisms of m6A reader IGF2BP1 in the hallmarks of cancer[J]. Genes Dis, 2025, 12(5):101567.doi: 10.1016/j.gendis.2025.101567.
|
| [9] |
Teng H, Stoiber M, Bar-Joseph Z, et al. Detecting m6A RNA modification from nanopore sequencing using a semisupervised learning framework[J]. Genome Res, 2024, 34(11):1987-1999. doi: 10.1101/gr.278960.124.
|
| [10] |
Xiang Y, Chang HM, Leung P, et al. RNA modifications in female reproductive physiology and disease: emerging roles and clinical implications[J]. Hum Reprod Update, 2025, 31(4):333-360. doi: 10.1093/humupd/dmaf005.
|
| [11] |
Li P, Lin Y, Ma H, et al. Epigenetic regulation in female reproduction: the impact of m6A on maternal-fetal health[J]. Cell Death Discov, 2025, 11(1):43. doi: 10.1038/s41420-025-02324-z.
pmid: 39904996
|
| [12] |
Alarcón CR, Goodarzi H, Lee H, et al. HNRNPA2B1 Is a Mediator of m6A-Dependent Nuclear RNA Processing Events[J]. Cell, 2015, 162(6):1299-1308. doi: 10.1016/j.cell.2015.08.011.
|
| [13] |
Liu N, Dai Q, Zheng G, et al. N6-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions[J]. Nature, 2015, 518(7540):560-564. doi: 10.1038/nature14234.
|
| [14] |
Liu N, Zhou KI, Parisien M, et al. N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein[J]. Nucleic Acids Res, 2017, 45(10):6051-6063. doi: 10.1093/nar/gkx141.
pmid: 28334903
|
| [15] |
Kumar A, Daripa P, Penumutchu S, et al. Thermodynamic insights into N6-methyladenosine-modified ribonucleic acids and their interactions with the RNA recognition motif of heterogeneous nuclear ribonucleoprotein C[J]. Int J Biol Macromol, 2025,312:144210. doi: 10.1016/j.ijbiomac.2025.144210.
|
| [16] |
Ivanova I, Much C, Di Giacomo M, et al. The RNA m6A Reader YTHDF2 Is Essential for the Post-transcriptional Regulation of the Maternal Transcriptome and Oocyte Competence[J]. Mol Cell, 2017, 67(6):1059-1067.e4. doi: 10.1016/j.molcel.2017.08.003.
pmid: 28867294
|
| [17] |
Das BB, Basu S, Sengupta A, et al. Post-Translational Modifications Orchestrate Repair of Trapped Topoisomerase-Induced DNA Breaks via TDP1 and TDP2[J]. J Mol Biol, 2025:169309. doi: 10.1016/j.jmb.2025.169309.
|
| [18] |
Nesic K, Parker P, Swisher EM, et al. DNA repair and the contribution to chemotherapy resistance[J]. Genome Med, 2025, 17(1):62. doi: 10.1186/s13073-025-01488-8.
|
| [19] |
Alfano L, Caporaso A, Altieri A, et al. Depletion of the RNA binding protein HNRNPD impairs homologous recombination by inhibiting DNA-end resection and inducing R-loop accumulation[J]. Nucleic Acids Res, 2019, 47(8):4068-4085. doi: 10.1093/nar/gkz076.
pmid: 30799487
|
| [20] |
Wang Z, Qu M, Chang S, et al. Human RNA-binding protein HNRNPD interacts with and regulates the repair of deoxyribouridine in DNA[J]. Int J Biol Macromol, 2024, 262(Pt 1):129951. doi: 10.1016/j.ijbiomac.2024.129951.
|
| [21] |
Refaat AM, Nakata M, Husain A, et al. HNRNPU facilitates antibody class-switch recombination through C-NHEJ promotion and R-loop suppression[J]. Cell Rep, 2023, 42(3):112284. doi: 10.1016/j.celrep.2023.112284.
|
| [22] |
Morales-Sánchez E, Campuzano-Caballero JC, Cervantes A, et al. Which Side of the Coin Are You on Regarding Possible Postnatal Oogenesis?[J]. Arch Med Res, 2024, 55(8):103071. doi: 10.1016/j.arcmed.2024.103071.
|
| [23] |
Ma Y, Hong Y, Gao R, et al. Maternal exposure to Aristolochic Acid I affects meiotic I progression by impairing DNA damage repair in fetal oocytes[J]. Ecotoxicol Environ Saf, 2025,295:118137. doi: 10.1016/j.ecoenv.2025.118137.
|
| [24] |
Lee PC, Wildt DE, Comizzoli P. Proteomic analysis of germinal vesicles in the domestic cat model reveals candidate nuclear proteins involved in oocyte competence acquisition[J]. Mol Hum Reprod, 2018, 24(1):14-26. doi: 10.1093/molehr/gax059.
pmid: 29126204
|
| [25] |
Wu ZW, Mou Q, Fang T, et al. Global 3′-untranslated region landscape mediated by alternative polyadenylation during meiotic maturation of pig oocytes[J]. Reprod Domest Anim, 2022, 57(1):33-44. doi: 10.1111/rda.14026.
|
| [26] |
Zhou CX, Wang SQ, Zhang JY, et al. HNRNPA2B1-mediated m6A modification enhances lncRNA NORHA stability to control granulosa cell functions[J]. Zool Res, 2025, 46(3):722-732. doi: 10.24272/j.issn.2095-8137.2024.378.
|
| [27] |
Zhu S, Hou J, Gao H, et al. SUMOylation of HNRNPA2B1 modulates RPA dynamics during unperturbed replication and genotoxic stress responses[J]. Mol Cell, 2023, 83(4):539-555.e7. doi: 10.1016/j.molcel.2023.01.003.
pmid: 36702126
|
| [28] |
Chen F, Xu W, Tang M, et al. hnRNPA2B1 deacetylation by SIRT6 restrains local transcription and safeguards genome stability[J]. Cell Death Differ, 2025, 32(3):382-396. doi: 10.1038/s41418-024-01412-4.
pmid: 39511404
|
| [29] |
Xiong X, Feng S, Ma X, et al. hnRNPC Functions with HuR to Regulate Alternative Splicing in an m6A-Dependent Manner and is Essential for Meiosis[J]. Adv Sci (Weinh), 2025, 12(13):e2412196. doi: 10.1002/advs.202412196.
|
| [30] |
Sun D, Wang Y, Sun N, et al. LncRNA DANCR counteracts premature ovarian insufficiency by regulating the senescence process of granulosa cells through stabilizing the interaction between p53 and hNRNPC[J]. J Ovarian Res, 2023, 16(1):41. doi: 10.1186/s13048-023-01115-3.
pmid: 36805799
|
| [31] |
Feng S, Wen H, Liu K, et al. hnRNPH1 establishes Sertoli-germ cell crosstalk through cooperation with PTBP1 and AR, and is essential for male fertility in mice[J]. Development, 2023, 150(3):dev201040. doi: 10.1242/dev.201040.
|
| [32] |
Wang N, Zhang P, Guo X, et al. Hnrnpk, a protein differentially expressed in immature rat ovarian development, is required for normal primordial follicle assembly and development[J]. Endocrinology, 2011, 152(3):1024-1035. doi: 10.1210/en.2010-0797.
pmid: 21190960
|
| [33] |
Zhang P, Wang N, Lin X, et al. Expression and localization of heterogeneous nuclear ribonucleoprotein K in mouse ovaries and preimplantation embryos[J]. Biochem Biophys Res Commun, 2016, 471(1):260-265. doi: 10.1016/j.bbrc.2016.02.003.
|