| [1] |
Joham AE, Norman RJ, Stener-Victorin E, et al. Polycystic ovary syndrome[J]. Lancet Diabetes Endocrinol, 2022, 10(9):668-680. doi: 10.1016/S2213-8587(22)00163-2.
|
| [2] |
Dapas M, Dunaif A. Deconstructing a Syndrome: Genomic Insights Into PCOS Causal Mechanisms and Classification[J]. Endocr Rev, 2022, 43(6):927-965. doi: 10.1210/endrev/bnac001.
pmid: 35026001
|
| [3] |
Koper-Lenkiewicz OM, Sutkowska K, Wawrusiewicz-Kurylonek N, et al. Proinflammatory Cytokines (IL-1, -6, -8, -15, -17, -18, -23, TNF-α) Single Nucleotide Polymorphisms in Rheumatoid Arthritis-A Literature Review[J]. Int J Mol Sci, 2022, 23(4):2106. doi: 10.3390/ijms23042106.
|
| [4] |
Gavaldà-Navarro A, Villarroya J, Cereijo R, et al. The endocrine role of brown adipose tissue: An update on actors and actions[J]. Rev Endocr Metab Disord, 2022, 23(1):31-41. doi: 10.1007/s11154-021-09640-6.
|
| [5] |
Gao Y, Xin C, Fan H, et al. Circulating apelin and chemerin levels in patients with polycystic ovary syndrome: A meta-analysis[J]. Front Endocrinol(Lausanne), 2022,13:1076951. doi: 10.3389/fendo.2022.1076951.
|
| [6] |
Peng Y, Yang H, Song J, et al. Elevated Serum Leptin Levels as a Predictive Marker for Polycystic Ovary Syndrome[J]. Front Endocrinol(Lausanne), 2022,13:845165. doi: 10.3389/fendo.2022.845165.
|
| [7] |
Al-Awadi AM, Saldhana FL, Bauyrzhanova Z, et al. Relation of resistin gene variants to resistin plasma levels and altered susceptibility to polycystic ovary syndrome: A case control study[J]. Am J Reprod Immunol, 2023, 90(1):e13731. doi: 10.1111/aji.13731.
|
| [8] |
Kuai D, Tang Q, Wang X, et al. Relationship between serum apelin, visfatin levels, and body composition in Polycystic Ovary Syndrome patients[J]. Eur J Obstet Gynecol Reprod Biol, 2024, 297:24-29. doi: 10.1016/j.ejogrb.2024.03.034.
pmid: 38555852
|
| [9] |
Ali AI, Nori W. Correlation of Serum Visfatin Level in Non-obese Women with Polycystic Ovary Syndrome and Matched Control[J]. Reprod Sci, 2022, 29(11):3285-3293. doi: 10.1007/s43032-022-00986-z.
pmid: 35687303
|
| [10] |
唐子轩, 李璟, 黄琦, 等. 多囊卵巢综合征患者脂联素与游离睾酮指数及胰岛素抵抗的相关性研究[J]. 中国全科医学, 2023, 26(8):927-932. doi: 10.12114/j.issn.1007-9572.2022.06118.
|
| [11] |
Paczkowska K, Sobczuk J, Zawadzka K, et al. Circulating levels of irisin and Meteorin-like protein in PCOS and its correlation with metabolic parameters[J]. Endokrynol Pol, 2024, 75(2):199-206. doi: 10.5603/ep.99111.
pmid: 38646985
|
| [12] |
王玉红, 张忠强, 卢静, 等. 多囊卵巢综合征患者血清Omentin、CTRP9、Vaspin表达水平及临床意义[J]. 生殖医学杂志, 2022, 31(10):1410-1414. doi: 10.3969/j.issn.1004-3845.2022.10.015.
|
| [13] |
Hu W, Wang R, Sun B. Meteorin-Like Ameliorates β Cell Function by Inhibiting β Cell Apoptosis of and Promoting β Cell Proliferation via Activating the WNT/β-Catenin Pathway[J]. Front Pharmacol, 2021,12:627147. doi: 10.3389/fphar.2021.627147.
|
| [14] |
Lee JO, Byun WS, Kang MJ, et al. The myokine meteorin-like (metrnl) improves glucose tolerance in both skeletal muscle cells and mice by targeting AMPKα2[J]. FEBS J, 2020, 287(10):2087-2104. doi: 10.1111/febs.15301.
pmid: 32196931
|
| [15] |
Oróstica ML, Astorga I, Plaza-Parrochia F, et al. Metformin Treatment Regulates the Expression of Molecules Involved in Adiponectin and Insulin Signaling Pathways in Endometria from Women with Obesity-Associated Insulin Resistance and PCOS[J]. Int J Mol Sci, 2022, 23(7):3922. doi: 10.3390/ijms23073922.
|
| [16] |
Zhou Y, Liu L, Jin B, et al. Metrnl Alleviates Lipid Accumulation by Modulating Mitochondrial Homeostasis in Diabetic Nephropathy[J]. Diabetes, 2023, 72(5):611-626. doi: 10.2337/db22-0680.
|
| [17] |
Ciura D, Owczarek AJ, Franik G, et al. A cross-sectional study of the association between circulating sex hormone-binding globulin levels and selected adipokines in women with polycystic ovary syndrome[J]. Front Med(Lausanne), 2023,10:1183961. doi: 10.3389/fmed.2023.1183961.
|
| [18] |
Yu M, Yang Y, Huang C, et al. Chemerin: A Functional Adipokine in Reproductive Health and Diseases[J]. Biomedicines, 2022, 10(8):1910. doi: 10.3390/biomedicines10081910.
|
| [19] |
Estienne A, Mellouk N, Bongrani A, et al. Involvement of chemerin and CMKLR1 in the progesterone decrease by PCOS granulosa cells[J]. Reproduction, 2021, 162(6):427-436. doi: 10.1530/REP-21-0265.
|
| [20] |
Schüler-Toprak S, Ortmann O, Buechler C, et al. The Complex Roles of Adipokines in Polycystic Ovary Syndrome and Endometriosis[J]. Biomedicines, 2022, 10(10):2503. doi: 10.3390/biomedicines10102503.
|
| [21] |
Obradovic M, Sudar-Milovanovic E, Soskic S, et al. Leptin and Obesity: Role and Clinical Implication[J]. Front Endocrinol(Lausanne), 2021,12:585887. doi: 10.3389/fendo.2021.585887.
|
| [22] |
Luo X, Gong Y, Cai L, et al. Chemerin regulates autophagy to participate in polycystic ovary syndrome[J]. J Int Med Res, 2021, 49(11):3000605211058376. doi: 10.1177/03000605211058376.
|
| [23] |
Ren Y, Zhao H, Yin C, et al. Adipokines, Hepatokines and Myokines: Focus on Their Role and Molecular Mechanisms in Adipose Tissue Inflammation[J]. Front Endocrinol (Lausanne), 2022,13:873699. doi: 10.3389/fendo.2022.873699.
|
| [24] |
Pich K, Respekta N, Kurowska P, et al. Omentin expression in the ovarian follicles of Large White and Meishan sows during the oestrous cycle and in vitro effect of gonadotropins and steroids on its level: Role of ERK1/2 and PI3K signaling pathways[J]. PLoS One, 2024, 19(2):e0297875. doi: 10.1371/journal.pone.0297875.
|
| [25] |
Feijing Z, Sun Z, Cheng L, et al. Leptin Modulates Ovarian Granulosa Cell Apoptosis by Regulating Telomerase Activity and Telomere Length in Polycystic Ovary Syndrome[J]. Lab Invest, 2025, 105(2):102169. doi: 10.1016/j.labinv.2024.102169.
|
| [26] |
Li XL, Ji YF, Feng Y, et al. Metabolic disparities between obese and non-obese patients with polycystic ovary syndrome: implications for endometrial receptivity indicators[J]. Gynecol Endocrinol, 2024, 40(1):2312895. doi: 10.1080/09513590.2024.2312895.
|
| [27] |
王娟, 杨雯钦, 刘进, 等. 脂联素通过上调PPARα/HOXA10通路改善多囊卵巢综合征大鼠的子宫内膜容受性[J]. 南方医科大学学报, 2024, 44(2):298-307. doi: 10.12122/j.issn.1673-4254.2024.02.12.
|
| [28] |
Anima B, Gurusubramanian G, Roy VK. Apelin receptor modulation mitigates letrozole-induced polycystic ovarian pathogenesis in mice[J]. Cytokine, 2024,179:156639. doi: 10.1016/j.cyto.2024.156639.
|
| [29] |
Cloix L, Reverchon M, Cornuau M, et al. Expression and regulation of INTELECTIN1 in human granulosa-lutein cells: role in IGF-1-induced steroidogenesis through NAMPT[J]. Biol Reprod, 2014, 91(2):50. doi: 10.1095/biolreprod.114.120410.
pmid: 24943040
|
| [30] |
Nejabati HR, Nikzad S, Roshangar L. Alleviative Effects of Adipose Tissue-derived Stem Cells and α-NETA on Metabolic, Biochemical, and Endocrine Parameters in a Letrozole-induced Rat Model of PCOS[J]. Curr Pharm Des, 2023, 29(24):1929-1938. doi: 10.2174/1381612829666230816100641.
|
| [31] |
Annie L, Gurusubramanian G, Roy VK. Inhibition of visfatin by FK866 mitigates pathogenesis of cystic ovary in letrozole-induced hyperandrogenised mice[J]. Life Sci, 2021,276:119409. doi: 10.1016/j.lfs.2021.119409.
|
| [32] |
Zhao H, Guo Y. Effects of Liraglutide on Leptin Promoter Methylation in Ovarian Granulosa Cells of Patients with Polycystic Ovary Syndrome and Obesity[J]. Gynecol Obstet Invest, 2025, 90(1):6-17. doi: 10.1159/000539039.
|
| [33] |
Daneshjou D, Mehranjani MS, Zadehmodarres S, et al. Sitagliptin/metformin improves the fertilization rate and embryo quality in polycystic ovary syndrome patients through increasing the expression of GDF9 and BMP15: A new alternative to metformin (a randomized trial)[J]. J Reprod Immunol, 2022,150:103499. doi: 10.1016/j.jri.2022.103499.
|
| [34] |
Olaniyi KS, Agan SU, Areloegbe SE, et al. Acetate attenuates hypothalamic pyroptosis in experimentally induced polycystic ovarian syndrome[J]. BMC Res Notes, 2024, 17(1):260. doi: 10.1186/s13104-024-06921-6.
pmid: 39267194
|
| [35] |
Pich K, Rajewska J, Kamińska K, et al. Effect of Vitamin D3 on Chemerin and Adiponectin Levels in Uterus of Polycystic Ovary Syndrome Rats[J]. Cells, 2023, 12(16):2026. doi: 10.3390/cells12162026.
|
| [36] |
Pourteymour Fard Tabrizi F, Abbasalizad Farhangi M, Vaezi M, et al. Changes of body composition and circulating neopterin, omentin-1, and chemerin in response to thylakoid-rich spinach extract with a hypocaloric diet in obese women with polycystic ovary syndrome: A randomized controlled trial[J]. Phytother Res, 2021, 35(5):2594-2606. doi: 10.1002/ptr.6999.
|
| [37] |
Mihanfar A, Nouri M, Roshangar L, et al. Therapeutic potential of quercetin in an animal model of PCOS: Possible involvement of AMPK/SIRT-1 axis[J]. Eur J Pharmacol, 2021,900:174062. doi: 10.1016/j.ejphar.2021.174062
|