国际生殖健康/计划生育 ›› 2021, Vol. 40 ›› Issue (3): 242-246.doi: 10.12280/gjszjk.20200647
收稿日期:
2020-11-17
出版日期:
2021-05-15
发布日期:
2021-05-28
通讯作者:
应小燕
E-mail:xiaoyanying@yahoo.com
基金资助:
Received:
2020-11-17
Published:
2021-05-15
Online:
2021-05-28
Contact:
YING Xiao-yan
E-mail:xiaoyanying@yahoo.com
摘要:
宫腔粘连本质上是损伤或感染等因素导致子宫内膜受损并发生内膜纤维化。宫腔粘连的发病机制包括上皮-间质转化、过度的炎症反应、血管生成障碍、低雌激素状态及子宫内膜干细胞缺失。现有的临床治疗如宫腔镜下粘连分离术、激素治疗、物理屏障植入等,均不能有效改善中重度宫腔粘连患者情况及预防粘连复发。近年研究发现,间充质干细胞在修复组织及再生医学方面有巨大潜力。目前,主要用于宫腔粘连研究的有子宫内膜间充质干细胞、骨髓间充质干细胞、脂肪间充质干细胞及妊娠附属物来源的间充质干细胞。它们主要通过免疫调控、分化、损伤趋化及旁分泌作用,来重建子宫内膜组织,改善子宫内膜功能,是宫腔粘连患者的新希望。
叶晨霞, 应小燕. 间充质干细胞治疗宫腔粘连的研究进展[J]. 国际生殖健康/计划生育, 2021, 40(3): 242-246.
YE Chen-xia, YING Xiao-yan. Research Progress of Mesenchymal Stem Cells in Treatment of Intrauterine Adhesions[J]. Journal of International Reproductive Health/Family Planning, 2021, 40(3): 242-246.
[1] |
Dreisler E, Kjer JJ. Asherman′s syndrome: current perspectives on diagnosis and management[J]. Int J Womens Health, 2019,11:191-198. doi: 10.2147/IJWH.S165474.
doi: 10.2147/IJWH.S165474 URL pmid: 30936754 |
[2] |
Gargett CE, Ye L. Endometrial reconstruction from stem cells[J]. Fertil Steril, 2012,98(1):11-20. doi: 10.1016/j.fertnstert.2012.05.004.
doi: 10.1016/j.fertnstert.2012.05.004 URL |
[3] | 郭罗培, 隋龙. 子宫内膜损伤修复与官腔粘连形成机制研究进展[J]. 中国实用妇科与产科杂志, 2019,35(6):706-709. doi: 10.19538/j.fk2019060124. |
[4] | 帅汝臻, 李丹丹, 刘丹. 411例宫腔粘连临床分析[J]. 实用妇科内分泌电子杂志, 2019, 6(9): 174, 176. doi: 10.3969/j.issn.2095-8803.2019.09.122. |
[5] |
Santamaria X, Isaacson K, Simón C. Asherman′s Syndrome: it may not be all our fault[J]. Hum Reprod, 2018,33(8):1374-1380. doi: 10.1093/humrep/dey232.
doi: 10.1093/humrep/dey232 URL |
[6] | 温思茜, 宋亚丽, 刘婧, 等. 上皮-间质转化与女性生殖系统发育、功能及疾病[J]. 国际生殖健康/计划生育杂志, 2019,38(3):236-239. doi: 10.3969/j.issn.1674-1889.2019.03.014. |
[7] | 付青, 卢秀琴, 王延明, 等. 宫腔粘连分子机制的研究进展[J]. 临床与实验病理学杂志, 2019,35(9):1079-1081. doi: 10.13315/j.cnki.cjcep.2019.09.015. |
[8] |
Capella-Monsonis H, Kearns S, Kelly J, et al. Battling adhesions: from understanding to prevention[J]. BMC Biomed Eng, 2019,1:5. doi: 10.1186/s42490-019-0005-0.
doi: 10.1186/s42490-019-0005-0 URL |
[9] | 杜娟, 康卉娴. ER和TGF-β1在宫腔粘连患者中的表达及其相关性的研究[J]. 宁夏医学杂志, 2020,42(7):628-630. doi: 10.13621/j.1001-5949.2020.07.0628. |
[10] | Zhou Q, Wu X, Hu J, et al. Abnormal expression of fibrosis markers, estrogen receptor alpha and stromal derived factor1/chemokine (CXC motif) receptor4 axis in intrauterine adhesions[J]. Int J Mol Med, 2018,42(1):81-90. doi: 10.3892/ijmm.2018.3586. |
[11] | Bosteels J, van Wessel S, Weyers S, et al. Hysteroscopy for treating subfertility associated with suspected major uterine cavity abnormalities[J]. Cochrane Database Syst Rev, 2018, 12(12):CD009461. doi: 10.1002/14651858.CD009461.pub4. |
[12] |
Guo EJ, Chung J, Poon L, et al. Reproductive outcomes after surgical treatment of asherman syndrome: A systematic review[J]. Best Pract Res Clin Obstet Gynaecol, 2019,59:98-114. doi: 10.1016/j.bpobgyn.2018.12.009.
doi: 10.1016/j.bpobgyn.2018.12.009 URL |
[13] | 段华, 甘露. 宫腔粘连的诊疗现状与进展[J]. 重庆医科大学学报, 2017,42(4):373-377. doi: 10.13406/j.cnki.cyxb.001244. |
[14] |
Sebbag L, Even M, Fay S, et al. Early Second-Look Hysteroscopy: Prevention and Treatment of Intrauterine Post-surgical Adhesions[J]. Front Surg, 2019,6:50. doi: 10.3389/fsurg.2019.00050.
doi: 10.3389/fsurg.2019.00050 URL |
[15] |
Xu W, Zhang Y, Yang Y, et al. Effect of early second-look hysteroscopy on reproductive outcomes after hysteroscopic adhesiolysis in patients with intrauterine adhesion, a retrospective study in China[J]. Int J Surg, 2018,50:49-54. doi: 10.1016/j.ijsu.2017.11.040.
doi: 10.1016/j.ijsu.2017.11.040 URL |
[16] |
Samsonraj RM, Raghunath M, Nurcombe V, et al. Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine[J]. Stem Cells Transl Med, 2017,6(12):2173-2185. doi: 10.1002/sctm.17-0129.
doi: 10.1002/sctm.17-0129 URL |
[17] | Sun L, Zhang S, Chang Q, et al. Establishment and comparison of different intrauterine adhesion modelling procedures in rats[J]. Reprod Fertil Dev, 2019 Apr 9. doi: 10.1071/RD18397. |
[18] |
Domnina A, Novikova P, Obidina J, et al. Human mesenchymal stem cells in spheroids improve fertility in model animals with damaged endometrium[J]. Stem Cell Res Ther, 2018,9(1):50. doi: 10.1186/s13287-018-0801-9.
doi: 10.1186/s13287-018-0801-9 URL pmid: 29482664 |
[19] |
Ding L, Li X, Sun H, et al. Transplantation of bone marrow mesenchymal stem cells on collagen scaffolds for the functional regeneration of injured rat uterus[J]. Biomaterials, 2014,35(18):4888-4900. doi: 10.1016/j.biomaterials.2014.02.046.
doi: 10.1016/j.biomaterials.2014.02.046 URL |
[20] |
Çil N, Yaka M, Ünal MS, et al. Adipose derived mesenchymal stem cell treatment in experimental asherman syndrome induced rats[J]. Mol Biol Rep, 2020,47(6):4541-4552. doi: 10.1007/s11033-020-05505-4.
doi: 10.1007/s11033-020-05505-4 URL |
[21] |
Shao X, Ai G, Wang L, et al. Adipose-derived stem cells transplantation improves endometrial injury repair[J]. Zygote, 2019,27(6):367-374. doi: 10.1017/S096719941900042X.
doi: 10.1017/S096719941900042X URL |
[22] |
Xin L, Lin X, Pan Y, et al. A collagen scaffold loaded with human umbilical cord-derived mesenchymal stem cells facilitates endometrial regeneration and restores fertility[J]. Acta Biomater, 2019,92:160-171. doi: 10.1016/j.actbio.2019.05.012.
doi: 10.1016/j.actbio.2019.05.012 URL |
[23] |
Gan L, Duan H, Xu Q, et al. Human amniotic mesenchymal stromal cell transplantation improves endometrial regeneration in rodent models of intrauterine adhesions[J]. Cytotherapy, 2017,19(5):603-616. doi: 10.1016/j.jcyt.2017.02.003.
doi: S1465-3249(17)30061-0 URL pmid: 28285950 |
[24] |
Santamaria X, Cabanillas S, Cervelló I, et al. Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Asherman′s syndrome and endometrial atrophy: a pilot cohort study[J]. Hum Reprod, 2016,31(5):1087-1096. doi: 10.1093/humrep/dew042.
doi: 10.1093/humrep/dew042 URL |
[25] |
Cao Y, Sun H, Zhu H, et al. Allogeneic cell therapy using umbilical cord MSCs on collagen scaffolds for patients with recurrent uterine adhesion: a phase I clinical trial[J]. Stem Cell Res Ther, 2018,9(1):192. doi: 10.1186/s13287-018-0904-3.
doi: 10.1186/s13287-018-0904-3 URL |
[26] |
Li N, Hua J. Interactions between mesenchymal stem cells and the immune system[J]. Cell Mol Life Sci, 2017,74(13):2345-2360. doi: 10.1007/s00018-017-2473-5.
doi: 10.1007/s00018-017-2473-5 URL |
[27] |
Galipeau J, Sensébé L. Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities[J]. Cell Stem Cell, 2018,22(6):824-833. doi: 10.1016/j.stem.2018.05.004.
doi: S1934-5909(18)30222-4 URL pmid: 29859173 |
[28] |
Almalki SG, Agrawal DK. Key transcription factors in the differentiation of mesenchymal stem cells[J]. Differentiation, 2016,92(1/2):41-51. doi: 10.1016/j.diff.2016.02.005.
doi: 10.1016/j.diff.2016.02.005 URL |
[29] | Morelli SS, Rameshwar P, Goldsmith LT. Experimental evidence for bone marrow as a source of nonhematopoietic endometrial stromal and epithelial compartment cells in a murine model[J]. Biol Reprod, 2013,89(1):7. doi: 10.1095/biolreprod.113.107987. |
[30] |
Ong YR, Cousins FL, Yang X, et al. Bone Marrow Stem Cells Do Not Contribute to Endometrial Cell Lineages in Chimeric Mouse Models[J]. Stem Cells, 2018,36(1):91-102. doi: 10.1002/stem.2706.
doi: 10.1002/stem.2706 URL |
[31] |
Alawadhi F, Du H, Cakmak H, et al. Bone Marrow-Derived Stem Cell (BMDSC) transplantation improves fertility in a murine model of Asherman′s syndrome[J]. PLoS One, 2014,9(5):e96662. doi: 10.1371/journal.pone.0096662.
doi: 10.1371/journal.pone.0096662 URL |
[32] |
Oh EJ, Lee HW, Kalimuthu S, et al. In vivo migration of mesenchymal stem cells to burn injury sites and their therapeutic effects in a living mouse model[J]. J Control Release, 2018,279:79-88. doi: 10.1016/j.jconrel.2018.04.020.
doi: 10.1016/j.jconrel.2018.04.020 URL |
[33] | Lin W, Xu L, Zwingenberger S, et al. Mesenchymal stem cells homing to improve bone healing[J]. J Orthop Translat, 2017,9:19-27. doi: 10.1016/j.jot.2017.03.002. |
[34] |
Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells - current trends and future prospective[J]. Biosci Rep, 2015,35(2):e00191. doi: 10.1042/BSR20150025.
doi: 10.1042/BSR20150025 URL |
[35] |
Du H, Naqvi H, Taylor HS. Ischemia/reperfusion injury promotes and granulocyte-colony stimulating factor inhibits migration of bone marrow-derived stem cells to endometrium[J]. Stem Cells Dev, 2012,21(18):3324-3331. doi: 10.1089/scd.2011.0193.
doi: 10.1089/scd.2011.0193 URL |
[36] |
Wang X, Mamillapalli R, Mutlu L, et al. Chemoattraction of bone marrow-derived stem cells towards human endometrial stromal cells is mediated by estradiol regulated CXCL12 and CXCR4 expression[J]. Stem Cell Res, 2015,15(1):14-22. doi: 10.1016/j.scr.2015.04.004.
doi: 10.1016/j.scr.2015.04.004 URL |
[37] |
Sahin Ersoy G, Zolbin MM, Cosar E, et al. CXCL12 Promotes Stem Cell Recruitment and Uterine Repair after Injury in Asherman′s Syndrome[J]. Mol Ther Methods Clin Dev, 2017,4:169-177. doi: 10.1016/j.omtm.2017.01.001.
doi: 10.1016/j.omtm.2017.01.001 URL |
[38] |
Zhao J, Zhang Q, Wang Y, et al. Uterine infusion with bone marrow mesenchymal stem cells improves endometrium thickness in a rat model of thin endometrium[J]. Reprod Sci, 2015,22(2):181-188. doi: 10.1177/1933719114537715.
doi: 10.1177/1933719114537715 URL |
[39] |
Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine[J]. Stem Cell Res Ther, 2018,9(1):63. doi: 10.1186/s13287-018-0791-7.
doi: 10.1186/s13287-018-0791-7 URL pmid: 29523213 |
[40] |
Zhao S, Qi W, Zheng J, et al. Exosomes Derived from Adipose Mesenchymal Stem Cells Restore Functional Endometrium in a Rat Model of Intrauterine Adhesions[J]. Reprod Sci, 2020,27(6):1266-1275. doi: 10.1007/s43032-019-00112-6.
doi: 10.1007/s43032-019-00112-6 URL |
[41] |
Yao Y, Chen R, Wang G, et al. Exosomes derived from mesenchymal stem cells reverse EMT via TGF-β1/Smad pathway and promote repair of damaged endometrium[J]. Stem Cell Res Ther, 2019,10(1):225. doi: 10.1186/s13287-019-1332-8.
doi: 10.1186/s13287-019-1332-8 URL |
[42] |
Liu Y, Tal R, Pluchino N, et al. Systemic administration of bone marrow-derived cells leads to better uterine engraftment than use of uterine-derived cells or local injection[J]. J Cell Mol Med, 2018,22(1):67-76. doi: 10.1111/jcmm.13294.
doi: 10.1111/jcmm.2018.22.issue-1 URL |
[43] |
Barbash IM, Chouraqui P, Baron J, et al. Systemic delivery of bone marrow-derived mesenchymal stem cells to the infarcted myocardium: feasibility, cell migration, and body distribution[J]. Circulation, 2003,108(7):863-868. doi: 10.1161/01.CIR.0000084828.50310.6A.
URL pmid: 12900340 |
[44] | 黎佳敏, 林姣, 彭婀娜, 等. 去细胞羊膜载体复合自体子宫内膜干细胞治疗重度宫腔粘连1例报道[J]. 生殖医学杂志, 2020,29(4):541-544. doi: 10.3969/j.issn.1004-3845.2020.04.021. |
[45] |
Yang H, Wu S, Feng R, et al. Vitamin C plus hydrogel facilitates bone marrow stromal cell-mediated endometrium regeneration in rats[J]. Stem Cell Res Ther, 2017,8(1):267. doi: 10.1186/s13287-017-0718-8.
doi: 10.1186/s13287-017-0718-8 URL |
[1] | 苗贺瑱, 刘佳佳, 闫宇, 马国霞, 王晓慧. 一例罕见的宫颈子宫内膜异位症[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 475-478. |
[2] | 饶慧, 卢娇兰, 周欢, 李雄. 子宫内膜中肾样腺癌累及宫颈管间质一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 410-414. |
[3] | 吴春蕾, 赵晓丽, 邱韵桓, 王宝娟, 董融, 李凯茜, 夏天. 结合基因芯片与单细胞转录组鉴定反复种植失败患者子宫内膜的细胞间通讯[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 265-273. |
[4] | 吴宇轩, 孟子凡, 董丽, 季慧. 宫腔镜子宫内膜息肉手术后冻融胚胎移植时机对妊娠结局的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 274-278. |
[5] | 王晶, 王晓慧. 子宫内膜小细胞神经内分泌癌一例并文献复习[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 212-215. |
[6] | 姜乐然, 张园, 王琳, 刁飞扬. 人类子宫内膜的单细胞组学研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 216-221. |
[7] | 高朝阳, 章宁晴, 陈琼华, 吴荣锋. 环状RNA在子宫内膜异位症不孕患者卵泡颗粒细胞中的作用[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 243-248. |
[8] | 王芳, 万桃, 杨永秀. 2型糖尿病相关子宫内膜癌与肠道菌群相关性的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 249-253. |
[9] | 叶霖, 侯志金, 孟昱时. 西罗莫司在生殖领域的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 132-137. |
[10] | 楚漫微, 陈欢欢, 王倩, 王祎玟, 李丹, 杨淑珺, 张翠莲. miR-20a在妇科常见恶性肿瘤中的作用机制[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 172-176. |
[11] | 任缘, 孟昱时. 薄型子宫内膜的病理生理特征和治疗的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 58-62. |
[12] | 王洁, 马翔. 尿酸与女性生殖系统疾病及妊娠结局的相关性[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 63-67. |
[13] | 高亚婷, 王芳, 马建红, 马怡彤, 刘畅. 铜死亡在妇科恶性肿瘤中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 74-78. |
[14] | 冯雅茹, 李雪, 张慧英. 脂肪酸合酶及其抑制剂在子宫内膜癌中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 79-82. |
[15] | 何玲, 蒯丹, 张艳芳, 田文艳, 王颖梅, 张慧英. 免疫细胞和免疫因子在子宫内膜癌中的作用[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 83-88. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||