[1] |
Kumar P, Kuscu C, Dutta A. Biogenesis and Function of Transfer RNA-Related Fragments (tRFs)[J]. Trends Biochem Sci, 2016, 41(8):679-689. doi: 10.1016/j.tibs.2016.05.004.
doi: 10.1016/j.tibs.2016.05.004
URL
|
[2] |
Pan Q, Han T, Li G. Novel insights into the roles of tRNA-derived small RNAs[J]. RNA Biol, 2021, 18(12):2157-2167. doi: 10.1080/15476286.2021.1922009.
doi: 10.1080/15476286.2021.1922009
URL
|
[3] |
Goodarzi H, Liu X, Nguyen HC, et al. Endogenous tRNA-Derived Fragments Suppress Breast Cancer Progression via YBX1 Displacement[J]. Cell, 2015, 161(4):790-802. doi: 10.1016/j.cell.2015.02.053.
doi: 10.1016/j.cell.2015.02.053
pmid: 25957686
|
[4] |
Kumar P, Anaya J, Mudunuri SB, et al. Meta-analysis of tRNA derived RNA fragments reveals that they are evolutionarily conserved and associate with AGO proteins to recognize specific RNA targets[J]. BMC Biol, 2014, 12:78. doi: 10.1186/s12915-014-0078-0.
doi: 10.1186/s12915-014-0078-0
URL
|
[5] |
Park J, Ahn SH, Shin MG, et al. tRNA-Derived Small RNAs: Novel Epigenetic Regulators[J]. Cancers(Basel), 2020, 12(10):2773. doi: 10.3390/cancers12102773.
doi: 10.3390/cancers12102773
|
[6] |
Lyons SM, Gudanis D, Coyne SM, et al. Identification of functional tetramolecular RNA G-quadruplexes derived from transfer RNAs[J]. Nat Commun, 2017, 8(1):1127. doi: 10.1038/s41467-017-01278-w.
doi: 10.1038/s41467-017-01278-w
URL
|
[7] |
Lyons SM, Achorn C, Kedersha NL, et al. YB-1 regulates tiRNA-induced Stress Granule formation but not translational repression[J]. Nucleic Acids Res, 2016, 44(14):6949-6960. doi: 10.1093/nar/gkw418.
doi: 10.1093/nar/gkw418
URL
|
[8] |
Guzzi N, Cieśla M, Ngoc P, et al. Pseudouridylation of tRNA-Derived Fragments Steers Translational Control in Stem Cells[J]. Cell, 2018, 173(5):1204-1216. e26. doi: 10.1016/j.cell.2018.03.008.
doi: 10.1016/j.cell.2018.03.008
URL
|
[9] |
Luo S, He F, Luo J, et al. Drosophila tsRNAs preferentially suppress general translation machinery via antisense pairing and participate in cellular starvation response[J]. Nucleic Acids Res, 2018, 46(10):5250-5268. doi: 10.1093/nar/gky189.
doi: 10.1093/nar/gky189
URL
|
[10] |
Kim HK, Fuchs G, Wang S, et al. A transfer-RNA-derived small RNA regulates ribosome biogenesis[J]. Nature, 2017, 552(7683):57-62. doi: 10.1038/nature25005.
doi: 10.1038/nature25005
URL
|
[11] |
Shen L, Tan Z, Gan M, et al. tRNA-Derived Small Non-Coding RNAs as Novel Epigenetic Molecules Regulating Adipogenesis[J]. Biomolecules, 2019, 9(7):274. doi: 10.3390/biom9070274.
doi: 10.3390/biom9070274
URL
|
[12] |
Zhu J, Cheng M, Zhao X. A tRNA-derived fragment (tRF-3001b) aggravates the development of nonalcoholic fatty liver disease by inhibiting autophagy[J]. Life Sci, 2020, 257:118125. doi: 10.1016/j.lfs.2020.118125.
doi: 10.1016/j.lfs.2020.118125
URL
|
[13] |
Zhong F, Hu Z, Jiang K, et al. Complement C3 activation regulates the production of tRNA-derived fragments Gly-tRFs and promotes alcohol-induced liver injury and steatosis[J]. Cell Res, 2019, 29(7):548-561. doi: 10.1038/s41422-019-0175-2.
doi: 10.1038/s41422-019-0175-2
pmid: 31076642
|
[14] |
Sharma U, Conine CC, Shea JM, et al. Biogenesis and function of tRNA fragments during sperm maturation and fertilization in mammals[J]. Science, 2016, 351(6271):391-396. doi: 10.1126/science.aad6780.
doi: 10.1126/science.aad6780
URL
|
[15] |
Peng H, Shi J, Zhang Y, et al. A novel class of tRNA-derived small RNAs extremely enriched in mature mouse sperm[J]. Cell Res, 2012, 22(11):1609-1612. doi: 10.1038/cr.2012.141.
doi: 10.1038/cr.2012.141
URL
|
[16] |
Hutcheon K, McLaughlin EA, Stanger SJ, et al. Analysis of the small non-protein-coding RNA profile of mouse spermatozoa reveals specific enrichment of piRNAs within mature spermatozoa[J]. RNA Biol, 2017, 14(12):1776-1790. doi: 10.1080/15476286.2017.1356569.
doi: 10.1080/15476286.2017.1356569
pmid: 28816603
|
[17] |
Chu C, Yu L, Wu B, et al. A sequence of 28S rRNA-derived small RNAs is enriched in mature sperm and various somatic tissues and possibly associates with inflammation[J]. J Mol Cell Biol, 2017, 9(3):256-259. doi: 10.1093/jmcb/mjx016.
doi: 10.1093/jmcb/mjx016
URL
|
[18] |
Tuorto F, Liebers R, Musch T, et al. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synjournal[J]. Nat Struct Mol Biol, 2012, 19(9):900-905. doi: 10.1038/nsmb.2357.
doi: 10.1038/nsmb.2357
URL
|
[19] |
Pereira M, Ribeiro DR, Pinheiro MM, et al. m(5)U54 tRNA Hypomodification by Lack of TRMT2A Drives the Generation of tRNA-Derived Small RNAs[J]. Int J Mol Sci, 2021, 22(6):2941. doi: 10.3390/ijms22062941.
doi: 10.3390/ijms22062941
URL
|
[20] |
Safra M, Sas-Chen A, Nir R, et al. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution[J]. Nature, 2017, 551(7679):251-255. doi: 10.1038/nature24456.
doi: 10.1038/nature24456
URL
|
[21] |
Guzzi N, Bellodi C. Novel insights into the emerging roles of tRNA-derived fragments in mammalian development[J]. RNA Biol, 2020, 17(8):1214-1222. doi: 10.1080/15476286.2020.1732694.
doi: 10.1080/15476286.2020.1732694
URL
|
[22] |
Sarker G, Sun W, Rosenkranz D, et al. Maternal overnutrition programs hedonic and metabolic phenotypes across generations through sperm tsRNAs[J]. Proc Natl Acad Sci U S A, 2019, 116(21):10547-10556. doi: 10.1073/pnas.1820810116.
doi: 10.1073/pnas.1820810116
URL
|
[23] |
Chen Q, Yan M, Cao Z, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder[J]. Science, 2016, 351(6271):397-400. doi: 10.1126/science.aad7977.
doi: 10.1126/science.aad7977
pmid: 26721680
|
[24] |
Fullston T, Ohlsson Teague EM, Palmer NO, et al. Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content[J]. FASEB J, 2013, 27(10):4226-4243. doi: 10.1096/fj.12-224048.
doi: 10.1096/fj.12-224048
pmid: 23845863
|
[25] |
Gapp K, Jawaid A, Sarkies P, et al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice[J]. Nat Neurosci, 2014, 17(5):667-669. doi: 10.1038/nn.3695.
doi: 10.1038/nn.3695
|
[26] |
Nätt D, Kugelberg U, Casas E, et al. Human sperm displays rapid responses to diet[J]. PLoS Biol, 2019, 17(12):e3000559. doi: 10.1371/journal.pbio.3000559.
doi: 10.1371/journal.pbio.3000559
URL
|
[27] |
Chen X, Sun Q, Zheng Y, et al. Human sperm tsRNA as potential biomarker and therapy target for male fertility[J]. Reproduction, 2021, 161(2):111-122. doi: 10.1530/REP-20-0415.
doi: 10.1530/REP-20-0415
URL
|
[28] |
Conine CC, Sun F, Song L, et al. Small RNAs Gained during Epididymal Transit of Sperm Are Essential for Embryonic Development in Mice[J]. Dev Cell, 2018, 46(4):470-480. e3. doi: 10.1016/j.devcel.2018.06.024.
doi: S1534-5807(18)30541-0
pmid: 30057276
|
[29] |
Genuth NR, Barna M. The Discovery of Ribosome Heterogeneity and Its Implications for Gene Regulation and Organismal Life[J]. Mol Cell, 2018, 71(3):364-374. doi: 10.1016/j.molcel.2018.07.018.
doi: S1097-2765(18)30587-2
pmid: 30075139
|