[1] |
Bender Atik R, Christiansen OB, Elson J, et al. ESHRE guideline: recurrent pregnancy loss[J]. Hum Reprod Open, 2018, 2018(2):hoy004. doi: 10.1093/hropen/hoy004.
|
[2] |
Liu X, Wang G, Huang H, et al. Exploring maternal-fetal interface with in vitro placental and trophoblastic models[J]. Front Cell Dev Biol, 2023, 11:1279227. doi: 10.3389/fcell.2023.1279227.
|
[3] |
Richardson LS, Kammala AK, Kim S, et al. Development of oxidative stress-associated disease models using feto-maternal interface organ-on-a-chip[J]. FASEB J, 2023, 37(7):e23000. doi: 10.1096/fj.202300531R.
|
[4] |
Sies H, Berndt C, Jones DP. Oxidative Stress[J]. Annu Rev Biochem, 2017, 86:715-748. doi: 10.1146/annurev-biochem-061516-045037.
pmid: 28441057
|
[5] |
Meng X, Chen C, Qian J, et al. Energy metabolism and maternal-fetal tolerance working in decidualization[J]. Front Immunol, 2023, 14:1203719. doi: 10.3389/fimmu.2023.1203719.
|
[6] |
Alrashed M, Tabassum H, Almuhareb N, et al. Assessment of DNA damage in relation to heavy metal induced oxidative stress in females with recurrent pregnancy loss (RPL)[J]. Saudi J Biol Sci, 2021, 28(9):5403-5407. doi: 10.1016/j.sjbs.2021.05.068.
pmid: 34466121
|
[7] |
Wang L, Tang J, Wang L, et al. Oxidative stress in oocyte aging and female reproduction[J]. J Cell Physiol, 2021, 236(12):7966-7983. doi: 10.1002/jcp.30468.
pmid: 34121193
|
[8] |
国林林. 氧化应激生物标记物影响早期妊娠丢失的研究及临床预测[D]. 青岛: 青岛大学, 2020.
|
[9] |
孙澜栩, 黄学惠, 黄燕, 等. 稽留流产绒毛中HIF-1α、VEGF和PLGF的表达及意义[J]. 现代妇产科进展, 2013, 22(5):367-369, 372. doi: 10.13283/j.cnki.xdfckjz.2013.05.012.
|
[10] |
Zhang H, He Y, Wang JX, et al. miR-30-5p-mediated ferroptosis of trophoblasts is implicated in the pathogenesis of preeclampsia[J]. Redox Biol, 2020, 29:101402. doi: 10.1016/j.redox.2019.101402.
|
[11] |
Tian P, Xu Z, Guo J, et al. Hypoxia causes trophoblast cell ferroptosis to induce miscarriage through lnc-HZ06/HIF1α-SUMO/NCOA4 axis[J]. Redox Biol, 2024, 70:103073. doi: 10.1016/j.redox.2024.103073.
|
[12] |
苏欣, 谢小娟, 梁健, 等. 大鼠孕期铁缺乏对子代成年大鼠氧化应激的影响[J]. 现代医药卫生, 2020, 36(21):3394-3396. doi: 10.3969/j.issn.1009-5519.2020.21.009.
|
[13] |
Lu Y, Zhang Y, Guan Q, et al. Exposure to multiple trace elements and miscarriage during early pregnancy: A mixtures approach[J]. Environ Int, 2022, 162:107161. doi: 10.1016/j.envint.2022.107161.
|
[14] |
Ruano C, Miralles F, Méhats C, et al. The Impact of Oxidative Stress of Environmental Origin on the Onset of Placental Diseases[J]. Antioxidants(Basel), 2022, 11(1):106. doi: 10.3390/antiox11010106.
|
[15] |
Liu D, Shi Q, Liu C, et al. Effects of Endocrine-Disrupting Heavy Metals on Human Health[J]. Toxics, 2023, 11(4):322. doi: 10.3390/toxics11040322.
|
[16] |
Rahaman MS, Rahman MM, Mise N, et al. Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management[J]. Environ Pollut, 2021, 289:117940. doi: 10.1016/j.envpol.2021.117940.
|
[17] |
Khanam R, Kumar I, Oladapo-Shittu O, et al. Prenatal Environmental Metal Exposure and Preterm Birth: A Scoping Review[J]. Int J Environ Res Public Health, 2021, 18(2):573. doi: 10.3390/ijerph18020573.
|
[18] |
Zhang Y, Yan X, Tan J, et al. Exposure of Reproductive-Aged Women to Multiple Metals and Its Associations with Unexplained Recurrent Miscarriage[J]. Toxics, 2023, 11(10):830. doi: 10.3390/toxics11100830.
|
[19] |
Bhardwaj JK, Bikal P, Sachdeva SN. Cadmium as an ovarian toxicant: A review[J]. J Appl Toxicol, 2024, 44(1):129-147. doi: 10.1002/jat.4526.
|
[20] |
Yang D, Liu Y, Liu S, et al. Exposure to heavy metals and its association with DNA oxidative damage in municipal waste incinerator workers in Shenzhen, China[J]. Chemosphere, 2020, 250:126289. doi: 10.1016/j.chemosphere.2020.126289.
|
[21] |
Simmers MD, Hudson KM, Baptissart M, et al. Epigenetic control of the imprinted growth regulator Cdkn1c in cadmium-induced placental dysfunction[J]. Epigenetics, 2023, 18(1):2088173. doi: 10.1080/15592294.2022.2088173.
|
[22] |
Chaouat G. The Th1/Th2 paradigm: still important in pregnancy? Semin Immunopathol, 2007, 29(2):95-113. doi: 10.1007/s00281-007-0069-0.
pmid: 17626305
|
[23] |
Kitazawa J, Kimura F, Nakamura A, et al. Endometrial Immunity for Embryo Implantation and Pregnancy Establishment[J]. Tohoku J Exp Med, 2020, 250(1):49-60. doi: 10.1620/tjem.250.49.
pmid: 31996497
|
[24] |
Zhang X, Wei H. Role of Decidual Natural Killer Cells in Human Pregnancy and Related Pregnancy Complications[J]. Front Immunol, 2021, 12:728291. doi: 10.3389/fimmu.2021.728291.
|
[25] |
Chen P, Zhou L, Chen J, et al. The Immune Atlas of Human Deciduas With Unexplained Recurrent Pregnancy Loss[J]. Front Immunol, 2021, 12:689019. doi: 10.3389/fimmu.2021.689019.
|
[26] |
Fang Z, Mao J, Huang J, et al. Increased levels of villus-derived exosomal miR-29a-3p in normal pregnancy than uRPL patients suppresses decidual NK cell production of interferon-γ and exerts a therapeutic effect in abortion-prone mice[J]. Cell Commun Signal, 2024, 22(1):230. doi: 10.1186/s12964-024-01610-0.
pmid: 38627796
|
[27] |
Liu S, Wei H, Li Y, et al. Characterization of dendritic cell (DC)-10 in recurrent miscarriage and recurrent implantation failure[J]. Reproduction, 2019, 158(3):247-255. doi: 10.1530/REP-19-0172.
|
[28] |
Huang C, Zhang H, Chen X, et al. Association of peripheral blood dendritic cells with recurrent pregnancy loss: a case-controlled study[J]. Am J Reprod Immunol, 2016, 76(4):326-332. doi: 10.1111/aji.12550.
|
[29] |
Huang J, Qin H, Yang Y, et al. A comparison of transcriptomic profiles in endometrium during window of implantation between women with unexplained recurrent implantation failure and recurrent miscarriage[J]. Reproduction, 2017, 153(6):749-758. doi: 10.1530/REP-16-0574.
|
[30] |
Meuleman T, Cohen D, Swings GM, et al. Increased complement C4d deposition at the maternal-fetal interface in unexplained recurrent miscarriage[J]. J Reprod Immunol, 2016, 113:54-60. doi: 10.1016/j.jri.2015.12.001.
pmid: 26759961
|
[31] |
Guerrero B, Hassouneh F, Delgado E, et al. Natural killer cells in recurrent miscarriage: An overview[J]. J Reprod Immunol, 2020, 142:103209. doi: 10.1016/j.jri.2020.103209.
|
[32] |
Agarwal A, Durairajanayagam D, Halabi J, et al. Proteomics, oxidative stress and male infertility[J]. Reprod Biomed Online, 2014, 29(1):32-58. doi: 10.1016/j.rbmo.2014.02.013.
pmid: 24813754
|
[33] |
Huyghe E, Methorst C, Faix A. Varicocèle et infertilité masculine[J]. Prog Urol, 2023, 33(13):624-635. French. doi: 10.1016/j.purol.2023.09.003.
pmid: 38012908
|
[34] |
Cho CL, Esteves SC, Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation[J]. Asian J Androl, 2016, 18(2):186-193. doi: 10.4103/1008-682X.170441.
|
[35] |
Zhang Q, Ren J, Wang F, et al. Chinese herbal medicine alleviates the pathogenesis of polycystic ovary syndrome by improving oxidative stress and glucose metabolism via mitochondrial Sirtuin 3 signaling[J]. Phytomedicine, 2023, 109:154556. doi:10.1016/j.phymed.2022.154556.
|
[36] |
Wang S, Wang Y, Qin Q, et al. Berberine Protects Against Dihydrotestosterone-Induced Human Ovarian Granulosa Cell Injury and Ferroptosis by Regulating the Circ_0097636/MiR-186-5p/SIRT3 Pathway[J]. Appl Biochem Biotechnol, 2023,Dec 28. doi: 10.1007/s12010-023-04825-y.
|
[37] |
Zhang D, Yi S, Cai B, et al. Involvement of ferroptosis in the granulosa cells proliferation of PCOS through the circRHBG/miR-515/SLC7A11 axis[J]. Ann Transl Med, 2021, 9(16):1348. doi: 10.21037/atm-21-4174.
pmid: 34532485
|
[38] |
Li YY, Peng YQ, Yang YX, et al. Baicalein improves the symptoms of polycystic ovary syndrome by mitigating oxidative stress and ferroptosis in the ovary and gravid placenta[J]. Phytomedicine, 2024, 128:155423. doi: 10.1016/j.phymed.2024.155423.
|
[39] |
刘春莲, 马文倩, 景万红, 等. 男性氧化应激水平及精子DNA损伤对反复早期妊娠丢失的影响[J]. 中国妇幼保健, 2019, 34(4):866-868. doi: 10.7620/zgfybj.j.issn.1001-4411.2019.04.46.
|
[40] |
Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive outcome, and analysis[J]. Fertil Steril, 2010, 93(4):1027-1036. doi: 10.1016/j.fertnstert.2009.10.046.
pmid: 20080235
|
[41] |
Menon R, Richardson LS. Preterm prelabor rupture of the membranes: A disease of the fetal membranes[J]. Semin Perinatol, 2017, 41(7):409-419. doi: 10.1053/j.semperi.2017.07.012.
pmid: 28807394
|
[42] |
Richardson L, Dixon CL, Aguilera-Aguirre L, et al. Oxidative stress-induced TGF-beta/TAB1-mediated p38MAPK activation in human amnion epithelial cells[J]. Biol Reprod, 2018, 99(5):1100-1112. doi: 10.1093/biolre/ioy135.
pmid: 29893818
|
[43] |
李慧敏, 杨琳. 稽留流产绒毛组织中APPL1,Nrf2和HO-1的水平表达与氧化应激的相关性研究[J]. 现代检验医学杂志, 2022, 37(5):33-38. doi: 10.3969/j.issn.1671-7414.2022.05.008.
|