国际生殖健康/计划生育 ›› 2022, Vol. 41 ›› Issue (4): 322-326.doi: 10.12280/gjszjk.20220179
收稿日期:
2022-04-06
出版日期:
2022-07-15
发布日期:
2022-07-20
通讯作者:
陈烨
E-mail:cy0914@163.com
SHEN Yan-qing, CHEN Huang, CHEN Ye()
Received:
2022-04-06
Published:
2022-07-15
Online:
2022-07-20
Contact:
CHEN Ye
E-mail:cy0914@163.com
摘要:
感染因素或宫腔手术操作导致的子宫内膜损伤阻碍胚胎的着床和发育,严重影响妇女的身心健康与生育能力。但目前治疗手段有限且效果欠佳。干细胞具有自我更新和分化潜能,在病变损伤组织的修复过程中发挥重要作用。骨髓间充质干细胞、脐带间充质干细胞、子宫内膜干细胞、脂肪干细胞和人羊膜上皮细胞等多种干细胞治疗子宫内膜损伤已在动物模型和临床研究中开展,并展现出巨大的潜力。干细胞治疗可促进子宫内膜细胞再生,改善子宫内膜厚度和微血管密度,提高受孕率并改善生育结局。干细胞治疗从形态和功能上改善子宫内膜,促进月经和生殖功能的恢复,为治疗子宫内膜损伤提供一种新策略。
沈艳清, 陈煌, 陈烨. 干细胞治疗子宫内膜损伤的研究进展[J]. 国际生殖健康/计划生育, 2022, 41(4): 322-326.
SHEN Yan-qing, CHEN Huang, CHEN Ye. Advances of Stem Cell Therapy for Endometrial Injuries[J]. Journal of International Reproductive Health/Family Planning, 2022, 41(4): 322-326.
[1] |
牛婷, 李爱斌, 陈力. 胎盘间充质干细胞修复受损子宫内膜[J]. 中国组织工程研究, 2017, 21(13):2074-2080. doi: 10.3969/j.issn.2095-4344.2017.13.018.
doi: 10.3969/j.issn.2095-4344.2017.13.018 |
[2] |
崔淑岭, 张英芝, 张晶, 等. 生物羊膜制品置入改善宫腔粘连术后子宫内膜容受性分析[J]. 中国临床解剖学杂志, 2022, 40(1):98-102. doi: 10.13418/j.issn.1001-165x.2022.1.20.
doi: 10.13418/j.issn.1001-165x.2022.1.20 |
[3] |
Song YT, Liu PC, Tan J, et al. Stem cell-based therapy for ameliorating intrauterine adhesion and endometrium injury[J]. Stem Cell Res Ther, 2021, 12(1):556. doi: 10.1186/s13287-021-02620-2.
doi: 10.1186/s13287-021-02620-2 URL |
[4] |
Wang L, Yu C, Chang T, et al. In situ repair abilities of human umbilical cord-derived mesenchymal stem cells and autocrosslinked hyaluronic acid gel complex in rhesus monkeys with intrauterine adhesion[J]. Sci Adv, 2020, 6(21):eaba6357. doi: 10.1126/sciadv.aba6357.
doi: 10.1126/sciadv.aba6357 URL |
[5] |
Kou L, Jiang X, Xiao S, et al. Therapeutic options and drug delivery strategies for the prevention of intrauterine adhesions[J]. J Control Release, 2020, 318:25-37. doi: 10.1016/j.jconrel.2019.12.007.
doi: 10.1016/j.jconrel.2019.12.007 URL |
[6] |
崔皓, 转黎, 马艳萍. 干细胞治疗薄型子宫内膜的研究进展[J]. 医学综述, 2020, 26(24):4811-4816. doi: 10.3969/j.issn.1006-2084.2020.24.006.
doi: 10.3969/j.issn.1006-2084.2020.24.006 |
[7] |
Mendt M, Rezvani K, Shpall E. Mesenchymal stem cell-derived exosomes for clinical use[J]. Bone Marrow Transplant, 2019, 54(Suppl 2):789-792. doi: 10.1038/s41409-019-0616-z.
doi: 10.1038/s41409-019-0616-z URL |
[8] |
Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos[J]. Nature, 1981, 292(5819):154-156. doi: 10.1038/292154a0.
doi: 10.1038/292154a0 URL |
[9] |
Fu X, Liu G, Halim A, et al. Mesenchymal Stem Cell Migration and Tissue Repair[J]. Cells, 2019, 8(8):784. doi: 10.3390/cells8080784.
doi: 10.3390/cells8080784 URL |
[10] |
Pierce JL, Begun DL, Westendorf JJ, et al. Defining osteoblast and adipocyte lineages in the bone marrow[J]. Bone, 2019, 118:2-7. doi: 10.1016/j.bone.2018.05.019.
doi: S8756-3282(18)30209-6 pmid: 29782940 |
[11] |
Taylor HS. Endometrial cells derived from donor stem cells in bone marrow transplant recipients[J]. JAMA, 2004, 292(1):81-85. doi: 10.1001/jama.292.1.81.
doi: 10.1001/jama.292.1.81 pmid: 15238594 |
[12] |
Gao L, Huang Z, Lin H, et al. Bone Marrow Mesenchymal Stem Cells (BMSCs) Restore Functional Endometrium in the Rat Model for Severe Asherman Syndrome[J]. Reprod Sci, 2019, 26(3):436-444. doi: 10.1177/1933719118799201.
doi: 10.1177/1933719118799201 URL |
[13] |
Santamaria X, Cabanillas S, Cervelló I, et al. Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Asherman syndrome and endometrial atrophy: a pilot cohort study[J]. Hum Reprod, 2016, 31(5):1087-1096. doi: 10.1093/humrep/dew042.
doi: 10.1093/humrep/dew042 URL |
[14] |
Xin L, Lin X, Pan Y, et al. A collagen scaffold loaded with human umbilical cord-derived mesenchymal stem cells facilitates endometrial regeneration and restores fertility[J]. Acta Biomater, 2019, 92:160-171. doi: 10.1016/j.actbio.2019.05.012.
doi: 10.1016/j.actbio.2019.05.012 URL |
[15] |
McElreavey KD, Irvine AI, Ennis KT, et al. Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton′s jelly portion of human umbilical cord[J]. Biochem Soc Trans, 1991, 19(1):29S. doi: 10.1042/bst019029s.
doi: 10.1042/bst019029s URL |
[16] |
Xu L, Ding L, Wang L, et al. Umbilical cord-derived mesenchymal stem cells on scaffolds facilitate collagen degradation via upregulation of MMP-9 in rat uterine scars[J]. Stem Cell Res Ther, 2017, 8(1):84. doi: 10.1186/s13287-017-0535-0.
doi: 10.1186/s13287-017-0535-0 URL |
[17] |
Zhang Y, Shi L, Lin X, et al. Unresponsive thin endometrium caused by Asherman syndrome treated with umbilical cord mesenchymal stem cells on collagen scaffolds: a pilot study[J]. Stem Cell Res Ther, 2021, 12(1):420. doi: 10.1186/s13287-021-02499-z.
doi: 10.1186/s13287-021-02499-z URL |
[18] |
Chan RW, Schwab KE, Gargett CE. Clonogenicity of human endometrial epithelial and stromal cells[J]. Biol Reprod, 2004, 70(6):1738-1750. doi: 10.1095/biolreprod.103.024109.
doi: 10.1095/biolreprod.103.024109 URL |
[19] |
Meng X, Ichim TE, Zhong J, et al. Endometrial regenerative cells: a novel stem cell population[J]. J Transl Med, 2007, 5:57. doi: 10.1186/1479-5876-5-57.
doi: 10.1186/1479-5876-5-57 URL |
[20] |
Zhang Y, Lin X, Dai Y, et al. Endometrial stem cells repair injured endometrium and induce angiogenesis via AKT and ERK pathways[J]. Reproduction, 2016, 152(5):389-402. doi: 10.1530/REP-16-0286.
doi: 10.1530/REP-16-0286 URL |
[21] |
Lin X, Zhang Y, Pan Y, et al. Endometrial stem cell-derived granulocyte-colony stimulating factor attenuates endometrial fibrosis via sonic hedgehog transcriptional activator Gli2[J]. Biol Reprod, 2018, 98(4):480-490. doi: 10.1093/biolre/ioy005.
doi: 10.1093/biolre/ioy005 URL |
[22] |
Bacakova L, Zarubova J, Travnickova M, et al. Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - a review[J]. Biotechnol Adv, 2018, 36(4):1111-1126. doi: 10.1016/j.biotechadv.2018.03.011.
doi: S0734-9750(18)30062-4 pmid: 29563048 |
[23] |
Lu H, Wang F, Mei H, et al. Human Adipose Mesenchymal Stem Cells Show More Efficient Angiogenesis Promotion on Endothelial Colony-Forming Cells than Umbilical Cord and Endometrium[J]. Stem Cells Int, 2018, 2018:7537589. doi: 10.1155/2018/7537589.
doi: 10.1155/2018/7537589 |
[24] |
Sun H, Lu J, Li B, et al. Partial regeneration of uterine horns in rats through adipose-derived stem cell sheets[J]. Biol Reprod, 2018, 99(5):1057-1069. doi: 10.1093/biolre/ioy121.
doi: 10.1093/biolre/ioy121 URL |
[25] |
Shao X, Ai G, Wang L, et al. Adipose-derived stem cells transplantation improves endometrial injury repair[J]. Zygote, 2019, 27(6):367-374. doi: 10.1017/S096719941900042X.
doi: 10.1017/S096719941900042X URL |
[26] |
Miki T. Stem cell characteristics and the therapeutic potential of amniotic epithelial cells[J]. Am J Reprod Immunol, 2018, 80(4):e13003. doi: 10.1111/aji.13003.
doi: 10.1111/aji.13003 URL |
[27] |
Gharibeh N, Aghebati-Maleki L, Madani J, et al. Cell-based therapy in thin endometrium and Asherman syndrome[J]. Stem Cell Res Ther, 2022, 13(1):33. doi: 10.1186/s13287-021-02698-8.
doi: 10.1186/s13287-021-02698-8 URL |
[28] |
Li B, Zhang Q, Sun J, et al. Human amniotic epithelial cells improve fertility in an intrauterine adhesion mouse model[J]. Stem Cell Res Ther, 2019, 10(1):257. doi: 10.1186/s13287-019-1368-9.
doi: 10.1186/s13287-019-1368-9 URL |
[29] |
Ouyang X, You S, Zhang Y, et al. Transplantation of Human Amnion Epithelial Cells Improves Endometrial Regeneration in Rat Model of Intrauterine Adhesions[J]. Stem Cells Dev, 2020, 29(20):1346-1362. doi: 10.1089/scd.2019.0246.
doi: 10.1089/scd.2019.0246 URL |
[30] |
Fan Y, Sun J, Zhang Q, et al. Transplantation of human amniotic epithelial cells promotes morphological and functional regeneration in a rat uterine scar model[J]. Stem Cell Res Ther, 2021, 12(1):207. doi: 10.1186/s13287-021-02260-6.
doi: 10.1186/s13287-021-02260-6 URL |
[31] |
Abbaspanah B, Momeni M, Ebrahimi M, et al. Advances in perinatal stem cells research: a precious cell source for clinical applications[J]. Regen Med, 2018, 13(5):595-610. doi: 10.2217/rme-2018-0019.
doi: 10.2217/rme-2018-0019 pmid: 30129876 |
[1] | 许阡, 成九梅, 安圆圆. 外阴平滑肌瘤8例临床分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 467-470. |
[2] | 张丹莉, 石雪冬, 李建磊, 周立飞, 王文艺, 张萍萍, 李亚丽. KMT2D基因新发变异致歌舞伎面谱综合征一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 471-474. |
[3] | 苗贺瑱, 刘佳佳, 闫宇, 马国霞, 王晓慧. 一例罕见的宫颈子宫内膜异位症[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 475-478. |
[4] | 刘思敏, 王佳丽, 张世霞, 魏佳, 杨永秀. 外阴隆突性皮肤纤维肉瘤一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 490-493. |
[5] | 田德吉尔, 冯晓玲. 肌肉肌醇与D-手性肌醇在多囊卵巢综合征中的研究及应用[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 512-517. |
[6] | 许阡, 成九梅. 宫颈脂肪平滑肌瘤17例临床分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 390-394. |
[7] | 吴颖颖, 杜欣. 妊娠中期单孔腹腔镜剔除多发子宫肌瘤术后足月妊娠一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 406-409. |
[8] | 饶慧, 卢娇兰, 周欢, 李雄. 子宫内膜中肾样腺癌累及宫颈管间质一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 410-414. |
[9] | 吴春蕾, 赵晓丽, 邱韵桓, 王宝娟, 董融, 李凯茜, 夏天. 结合基因芯片与单细胞转录组鉴定反复种植失败患者子宫内膜的细胞间通讯[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 265-273. |
[10] | 吴宇轩, 孟子凡, 董丽, 季慧. 宫腔镜子宫内膜息肉手术后冻融胚胎移植时机对妊娠结局的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 274-278. |
[11] | 许阡, 袁静, 安圆圆. 子宫及子宫外多发性脂肪平滑肌瘤一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 298-301. |
[12] | 徐晓燕, 王笑璇. 卵巢妊娠破裂三例诊疗体会[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 309-312. |
[13] | 李丹萍, 连方, 相珊. 二甲双胍治疗多囊卵巢综合征的机制研究新进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 343-347. |
[14] | 王晶, 王晓慧. 子宫内膜小细胞神经内分泌癌一例并文献复习[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 212-215. |
[15] | 姜乐然, 张园, 王琳, 刁飞扬. 人类子宫内膜的单细胞组学研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 216-221. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||