[1] |
Figueras F, Gratacos E. An integrated approach to fetal growth restriction[J]. Best Pract Res Clin Obstet Gynaecol, 2017, 38:48-58. doi: 10.1016/j.bpobgyn.2016.10.006.
doi: S1521-6934(16)30110-9
pmid: 27940123
|
[2] |
American College of Obstetricians and Gynecologists′ Committee on Practice Bulletins—Obstetrics and the Society for Maternal-Fetal Medicine. ACOG Practice Bulletin No. 204: Fetal Growth Restriction[J]. Obstet Gynecol, 2019, 133(2):e97-e109. doi: 10.1097/AOG.0000000000003070.
doi: 10.1097/AOG.0000000000003070.
|
[3] |
Burton GJ, Jauniaux E. Pathophysiology of placental-derived fetal growth restriction[J]. Am J Obstet Gynecol, 2018, 218(2S):S745-S761. doi: 10.1016/j.ajog.2017.11.577.
doi: 10.1016/j.ajog.2017.11.577
URL
|
[4] |
Nardozza LM, Caetano AC, Zamarian AC, et al. Fetal growth restriction: current knowledge[J]. Arch Gynecol Obstet, 2017, 295(5):1061-1077. doi: 10.1007/s00404-017-4341-9.
doi: 10.1007/s00404-017-4341-9
pmid: 28285426
|
[5] |
Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes)[J]. J Biol Chem, 1987, 262(19):9412-9420.
pmid: 3597417
|
[6] |
Floriano JF, Willis G, Catapano F, et al. Exosomes Could Offer New Options to Combat the Long-Term Complications Inflicted by Gestational Diabetes Mellitus[J]. Cells, 2020, 9(3):675. doi: 10.3390/ cells9030675.
doi: 10.3390/ cells9030675
URL
|
[7] |
Yang H, Ma Q, Wang Y, et al. Clinical application of exosomes and circulating microRNAs in the diagnosis of pregnancy complications and foetal abnormalities[J]. J Transl Med, 2020, 18(1):32. doi: 10.1186/s12967-020-02227-w.
doi: 10.1186/s12967-020-02227-w
pmid: 31969163
|
[8] |
Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release[J]. Cell Mol Life Sci, 2018, 75(2):193-208. doi: 10.1007/s00018-017-2595-9.
doi: 10.1007/s00018-017-2595-9
pmid: 28733901
|
[9] |
Jin J, Menon R. Placental exosomes: A proxy to understand pregnancy complications[J]. Am J Reprod Immunol, 2018, 79(5):e12788. doi: 10.1111/aji.12788.
doi: 10.1111/aji.12788
URL
|
[10] |
Salomon C, Rice GE. Role of Exosomes in Placental Homeostasis and Pregnancy Disorders[J]. Prog Mol Biol Transl Sci, 2017, 145:163-179. doi: 10.1016/bs.pmbts.2016.12.006.
doi: 10.1016/bs.pmbts.2016.12.006
|
[11] |
Miranda J, Paules C, Nair S, et al. Placental exosomes profile in maternal and fetal circulation in intrauterine growth restriction - Liquid biopsies to monitoring fetal growth[J]. Placenta, 2018, 64:34-43. doi: 10.1016/j.placenta.2018.02.006.
doi: S0143-4004(18)30065-1
pmid: 29626979
|
[12] |
Elfeky O, Longo S, Lai A, et al. Influence of maternal BMI on the exosomal profile during gestation and their role on maternal systemic inflammation[J]. Placenta, 2017, 50:60-69. doi: 10.1016/j.placenta.2016.12.020.
doi: S0143-4004(16)30674-9
pmid: 28161063
|
[13] |
方正, 茅佳钦, 陈书强, 等. 绒毛外泌体递送HLA-G增强人蜕膜NK细胞表达骨诱导因子(OGN)和多效生长因子(PTN)[J]. 细胞与分子免疫学杂志, 2022, 38(6):535-541.
|
[14] |
Salomon C, Guanzon D, Scholz-Romero K, et al. Placental Exosomes as Early Biomarker of Preeclampsia: Potential Role of Exosomal MicroRNAs Across Gestation[J]. J Clin Endocrinol Metab, 2017, 102(9): 3182-3194. doi: 10.1210/jc.2017-00672.
doi: 10.1210/jc.2017-00672
pmid: 28531338
|
[15] |
Ghafourian M, Mahdavi R, Akbari Jonoush Z, et al. The implications of exosomes in pregnancy: emerging as new diagnostic markers and therapeutics targets[J]. Cell Commun Signal, 2022, 20(1):51. doi: 10.1186/s12964-022-00853-z.
doi: 10.1186/s12964-022-00853-z
pmid: 35414084
|
[16] |
Bai K, Lee CL, Liu X, et al. Human placental exosomes induce maternal systemic immune tolerance by reprogramming circulating monocytes[J]. J Nanobiotechnology, 2022, 20(1):86. doi: 10.1186/s12951-022-01283-2.
doi: 10.1186/s12951-022-01283-2
|
[17] |
Hashimoto A, Sugiura K, Hoshino A. Impact of exosome-mediated feto-maternal interactions on pregnancy maintenance and development of obstetric complications[J]. J Biochem, 2021, 169(2):163-171. doi: 10.1093/jb/mvaa137.
doi: 10.1093/jb/mvaa137
pmid: 33231644
|
[18] |
Nair S, Jayabalan N, Guanzon D, et al. Human placental exosomes in gestational diabetes mellitus carry a specific set of miRNAs associated with skeletal muscle insulin sensitivity[J]. Clin Sci (Lond), 2018, 132(22):2451-2467. doi: 10.1042/CS20180487.
doi: 10.1042/CS20180487
pmid: 30254065
|
[19] |
Delorme-Axford E, Bayer A, Sadovsky Y, et al. Autophagy as a mechanism of antiviral defense at the maternal-fetal interface[J]. Autophagy, 2013, 9(12):2173-2174. doi: 10.4161/auto.26558.
doi: 10.4161/auto.26558
pmid: 24231730
|
[20] |
Czernek L, Düchler M. Exosomes as Messengers Between Mother and Fetus in Pregnancy[J]. Int J Mol Sci, 2020, 21(12):4264. doi: 10.3390/ijms21124264.
doi: 10.3390/ijms21124264
URL
|
[21] |
Rafaeli-Yehudai T, Imterat M, Douvdevani A, et al. Maternal total cell-free DNA in preeclampsia and fetal growth restriction: Evidence of differences in maternal response to abnormal implantation[J]. PLoS One, 2018, 13(7):e0200360. doi: 10.1371/journal.pone.0200360.
doi: 10.1371/journal.pone.0200360
URL
|
[22] |
Adiyaman D, Konuralp Atakul B, Kuyucu M, et al. Can fetal fractions in the cell-free DNA test predict the onset of fetal growth restriction?[J]. J Perinat Med, 2020 Apr 2:/j/jpme.ahead-of-print/jpm-2020-0010/jpm-2020-0010.xml. doi: 10.1515/jpm-2020-0010.
doi: 10.1515/jpm-2020-0010
|
[23] |
Burkova EE, Sedykh SE, Nevinsky GA. Human Placenta Exosomes: Biogenesis, Isolation, Composition, and Prospects for Use in Diagnostics[J]. Int J Mol Sci, 2021, 22(4):2158. doi: 10.3390/ijms22042158.
doi: 10.3390/ijms22042158
URL
|
[24] |
Cai M, Kolluru GK, Ahmed A. Small Molecule, Big Prospects: MicroRNA in Pregnancy and Its Complications[J]. J Pregnancy, 2017, 2017:6972732. doi: 10.1155/2017/6972732.
doi: 10.1155/2017/6972732
|
[25] |
Donker RB, Mouillet JF, Chu T, et al. The expression profile of C19MC microRNAs in primary human trophoblast cells and exosomes[J]. Mol Hum Reprod, 2012, 18(8):417-424. doi: 10.1093/ molehr/gas013.
doi: 10.1093/molehr/gas013
pmid: 22383544
|
[26] |
Hromadnikova I, Dvorakova L, Kotlabova K, et al. The Prediction of Gestational Hypertension, Preeclampsia and Fetal Growth Restriction via the First Trimester Screening of Plasma Exosomal C19MC microRNAs[J]. Int J Mol Sci, 2019, 20(12):2972. doi: 10.3390/ijms20122972.
doi: 10.3390/ijms20122972
URL
|
[27] |
Wang W, Feng L, Zhang H, et al. Preeclampsia up-regulates angiogenesis-associated microRNA (i.e., miR-17, -20a, and -20b) that target ephrin-B2 and EPHB4 in human placenta[J]. J Clin Endocrinol Metab, 2012, 97(6):E1051-E1059. doi: 10.1210/jc.2011-3131.
doi: 10.1210/jc.2011-3131
URL
|
[28] |
James JL, Stone PR, Chamley LW. The regulation of trophoblast differentiation by oxygen in the first trimester of pregnancy[J]. Hum Reprod Update, 2006, 12(2):137-144. doi: 10.1093/humupd/dmi043.
doi: 10.1093/humupd/dmi043
pmid: 16234296
|
[29] |
Cindrova-Davies T, Herrera EA, Niu Y, et al. Reduced cystathionine γ-lyase and increased miR-21 expression are associated with increased vascular resistance in growth-restricted pregnancies: hydrogen sulfide as a placental vasodilator[J]. Am J Pathol, 2013, 182(4):1448-1458. doi: 10.1016/j.ajpath.2013.01.001.
doi: 10.1016/j.ajpath.2013.01.001
pmid: 23410520
|