[1] |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1):7-33. doi: 10.3322/caac.21708.
|
[2] |
Raglan O, Kalliala I, Markozannes G, et al. Risk factors for endometrial cancer: An umbrella review of the literature[J]. Int J Cancer, 2019, 145(7):1719-1730. doi: 10.1002/ijc.31961.
pmid: 30387875
|
[3] |
Maiorano BA, Maiorano M, Cormio G, et al. How Immunotherapy Modified the Therapeutic Scenario of Endometrial Cancer: A Systematic Review[J]. Front Oncol, 2022, 12:844801. doi: 10.3389/fonc.2022.844801.
|
[4] |
Kvedaraite E, Ginhoux F. Human dendritic cells in cancer[J]. Sci Immunol, 2022, 7(70):eabm9409. doi: 10.1126/sciimmunol.abm9409.
|
[5] |
贾建军, 王自能, 罗新. 肿瘤浸润性树突状细胞在子宫内膜癌中的表达及其临床意义[J]. 中国实用妇科与产科杂志, 2011, 27(1):35-38.
|
[6] |
闫巧辉, 邢国臣, 潘琼. 恶性肿瘤特异生长因子和肿瘤浸润性树突状细胞在子宫内膜癌患者中的表达及临床意义[J]. 现代肿瘤医学, 2019, 27(5):845-848. doi: 10.3969/j.issn.1672-4992.2019.05.032.
|
[7] |
马静. 树突状细胞疫苗诱导抗子宫内膜癌细胞毒性反应的体外研究[D]. 石家庄: 河北医科大学, 2007.
|
[8] |
Hatzioannou A, Boumpas A, Papadopoulou M, et al. Regulatory T Cells in Autoimmunity and Cancer: A Duplicitous Lifestyle[J]. Front Immunol, 2021, 12:731947. doi: 10.3389/fimmu.2021.731947.
|
[9] |
Tanaka A, Sakaguchi S. Targeting Treg cells in cancer immunotherapy[J]. Eur J Immunol, 2019, 49(8):1140-1146. doi: 10.1002/eji.201847659.
pmid: 31257581
|
[10] |
Colegio OR. Lactic acid polarizes macrophages to a tumor-promoting state[J]. Oncoimmunology, 2016, 5(3):e1014774. doi: 10.1080/2162402X.2015.1014774.
|
[11] |
顾胜蓝, 孙笑, 王玉东. M2型肿瘤相关巨噬细胞与子宫内膜癌相关性研究[J]. 中国实用妇科与产科杂志, 2018, 34(5):555-558. doi: 10.19538/j.fk2018050119.
|
[12] |
文静, 黄洁, 李云云, 等. 肿瘤相关巨噬细胞相关性miR-99a对子宫内膜癌细胞生长和侵袭的调控作用[J]. 中国癌症杂志, 2020, 30(8):561-569. doi: 10.19401/j.cnki.1007-3639.2020.08.001.
|
[13] |
Tu J, Tan X, Chen Y, et al. Growth arrest-specific transcript 5 represses endometrial cancer development by promoting antitumor function of tumor-associated macrophages[J]. Cancer Sci, 2022, 113(8):2496-2512. doi: 10.1111/cas.15390.
|
[14] |
Wang Y, Ma H, Li Y, et al. MiR-192-5p-Modified Tumor-Associated Macrophages-Derived Exosome Suppressed Endometrial Cancer Progression Through Targeting IRAK1/NF-κB Signaling[J]. Reprod Sci, 2022, 29(2):436-447. doi: 10.1007/s43032-021-00789-8.
pmid: 35000146
|
[15] |
Basu A, Ramamoorthi G, Albert G, et al. Differentiation and Regulation of TH Cells: A Balancing Act for Cancer Immunotherapy[J]. Front Immunol, 2021, 12:669474. doi: 10.3389/fimmu.2021.669474.
|
[16] |
Saravia J, Chapman NM, Chi H. Helper T cell differentiation[J]. Cell Mol Immunol, 2019, 16(7):634-643. doi: 10.1038/s41423-019-0220-6.
pmid: 30867582
|
[17] |
张凯, 刘玉林, 胡佳丽, 等. CD4+T细胞亚群在子宫内膜癌中的研究进展[J]. 国际妇产科学杂志, 2020, 47(5):525-530,后插1.
|
[18] |
胡佳丽. 子宫内膜癌患者内脂素水平和Th9细胞比例的变化及意义[D]. 天津: 天津医科大学, 2020.
|
[19] |
Batlle E, Massagué J. Transforming Growth Factor-β Signaling in Immunity and Cancer[J]. Immunity, 2019, 50(4):924-940. doi: 10.1016/j.immuni.2019.03.024.
pmid: 30995507
|
[20] |
秦廷芹, 袁芳, 王蓁, 等. IL-23与TGF-β在子宫内膜癌患者癌组织及外周血中的表达及其意义[J]. 精准医学杂志, 2020, 35(3):230-233,236. doi: 10.13362/j.jpmed.202003011.
|
[21] |
Lei Q, Wang D, Sun K, et al. Resistance Mechanisms of Anti-PD1/PDL1 Therapy in Solid Tumors[J]. Front Cell Dev Biol, 2020, 8:672. doi: 10.3389/fcell.2020.00672.
pmid: 32793604
|
[22] |
秦绪颖, 刘秀芳, 张丽丽, 等. PD-1、PD-L1蛋白在子宫内膜癌组织中的表达及其临床意义[J]. 肿瘤预防与治疗, 2022, 35(2):111-119. doi: 10.3969/j.issn.1674-0904.2022.02.003.
|
[23] |
汪锋, 胡玉崇, 贺凤, 等. EGFR与PD-1、PD-L1在子宫内膜癌中的表达研究[J]. 中国实验诊断学, 2020, 24(10):1586-1589. doi: 10.3969/j.issn.1007-4287.2020.10.002.
|
[24] |
Marcus L, Lemery SJ, Keegan P, et al. FDA Approval Summary: Pembrolizumab for the Treatment of Microsatellite Instability-High Solid Tumors[J]. Clin Cancer Res, 2019, 25(13):3753-3758. doi: 10.1158/1078-0432.CCR-18-4070.
pmid: 30787022
|
[25] |
Makker V, Colombo N, Casado Herráez A, et al. Lenvatinib Plus Pembrolizumab in Previously Treated Advanced Endometrial Cancer: Updated Efficacy and Safety From the Randomized Phase Ⅲ Study 309/KEYNOTE-775[J]. J Clin Oncol, 2023, 41(16):2904-2910. doi: 10.1200/JCO.22.02152.
|
[26] |
Briukhovetska D, Dörr J, Endres S, et al. Interleukins in cancer: from biology to therapy[J]. Nat Rev Cancer, 2021, 21(8):481-499. doi: 10.1038/s41568-021-00363-z.
pmid: 34083781
|
[27] |
Yang Y, Lundqvist A. Immunomodulatory Effects of IL-2 and IL-15; Implications for Cancer Immunotherapy[J]. Cancers (Basel), 2020, 12(12):3586. doi: 10.3390/cancers12123586.
|
[28] |
Wang X, Wei Z, Tang Z, et al. IL-37b△1-45 suppresses the migration and invasion of endometrial cancer cells by targeting the Rac1/NF-κB/MMP2 signal pathway[J]. Lab Invest, 2021, 101(6):760-774. doi: 10.1038/s41374-021-00544-2.
|
[29] |
Tong H, Feng H, Hu X, et al. Identification of Interleukin-9 Producing Immune Cells in Endometrial Carcinoma and Establishment of a Prognostic Nomogram[J]. Front Immunol, 2020, 11:544248. doi: 10.3389/fimmu.2020.544248.
|
[30] |
Waldmann TA. Cytokines in Cancer Immunotherapy[J]. Cold Spring Harb Perspect Biol, 2018, 10(12):a028472. doi: 10.1101/cshperspect.a028472.
|
[31] |
Dvorak HF, Gresser I. Microvascular injury in pathogenesis of interferon-induced necrosis of subcutaneous tumors in mice[J]. J Natl Cancer Inst, 1989, 81(7):497-502. doi: 10.1093/jnci/81.7.497.
pmid: 2921774
|
[32] |
Yi BR, Kim SU, Choi KC. Additional effects of engineered stem cells expressing a therapeutic gene and interferon-β in a xenograft mouse model of endometrial cancer[J]. Int J Oncol, 2015, 47(1):171-178. doi: 10.3892/ijo.2015.2999.
|
[33] |
Zhang J, Guo B, Chen JH, et al. NLRC5 potentiates anti-tumor CD8+ T cells responses by activating interferon-β in endometrial cancer[J]. Transl Oncol, 2023, 36:101742. doi: 10.1016/j.tranon.2023.101742.
|
[34] |
Piconese S, Pacella I, Timperi E, et al. Divergent effects of type-Ⅰ interferons on regulatory T cells[J]. Cytokine Growth Factor Rev, 2015, 26(2):133-141. doi: 10.1016/j.cytogfr.2014.10.012.
|