国际生殖健康/计划生育 ›› 2022, Vol. 41 ›› Issue (2): 166-171.doi: 10.12280/gjszjk.20210603
收稿日期:
2021-12-17
出版日期:
2022-03-15
发布日期:
2022-03-29
通讯作者:
薛凤霞
E-mail:fengxiaxue1962@163.com
基金资助:
Received:
2021-12-17
Published:
2022-03-15
Online:
2022-03-29
Contact:
XUE Feng-xia
E-mail:fengxiaxue1962@163.com
摘要:
宫颈癌的发生发展是肿瘤细胞与其周围微环境相互促进、共同演化的一个动态过程。肿瘤相关成纤维细胞(cancer-associated fibroblasts,CAFs)作为肿瘤微环境(tumor microenvironment,TME)中主要的细胞成分,可起源于不同细胞,具有来源多样性和功能异质性,不同来源的CAFs具有不同的分子标志物。CAFs参与宫颈癌细胞增殖、侵袭和转移等关键过程,是促进肿瘤血管生成的重要因素,通过多种机制使TME处于免疫抑制状态,促进肿瘤细胞的免疫逃逸,同时CAFs与宫颈癌的代谢重编程、临床预后等也密切相关。近年对CAFs及其介导宫颈癌进展相关机制的深入研究为针对CAFs的靶向治疗提供了初步的线索与依据。综述CAFs的特点和来源,对宫颈癌发生发展的作用,并对靶向CAFs的治疗现状进行总结,以期为宫颈癌的治疗提供新的思路。
滕飞, 薛凤霞. 肿瘤相关成纤维细胞在宫颈癌中的研究进展[J]. 国际生殖健康/计划生育, 2022, 41(2): 166-171.
TENG Fei, XUE Feng-xia. Research Progress of Cancer-Associated Fibroblasts in Cervical Cancer[J]. Journal of International Reproductive Health/Family Planning, 2022, 41(2): 166-171.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. doi: 10.3322/caac.21660.
doi: 10.3322/caac.21660 URL |
[2] |
Zeltz C, Primac I, Erusappan P, et al. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins[J]. Semin Cancer Biol, 2020, 62:166-181. doi: 10.1016/j.semcancer.2019.08.004.
doi: 10.1016/j.semcancer.2019.08.004 URL |
[3] |
Ganguly D, Chandra R, Karalis J, et al. Cancer-Associated Fibroblasts: Versatile Players in the Tumor Microenvironment[J]. Cancers(Basel), 2020, 12(9):2652. doi: 10.3390/cancers12092652.
doi: 10.3390/cancers12092652 |
[4] |
Sahai E, Astsaturov I, Cukierman E, et al. A framework for advancing our understanding of cancer-associated fibroblasts[J]. Nat Rev Cancer, 2020, 20(3):174-186. doi: 10.1038/s41568-019-0238-1.
doi: 10.1038/s41568-019-0238-1 pmid: 31980749 |
[5] |
Nurmik M, Ullmann P, Rodriguez F, et al. In search of definitions: Cancer-associated fibroblasts and their markers[J]. Int J Cancer, 2020, 146(4):895-905. doi: 10.1002/ijc.32193.
doi: 10.1002/ijc.32193 URL |
[6] |
Wang Z, Yang Q, Tan Y, et al. Cancer-Associated Fibroblasts Suppress Cancer Development: The Other Side of the Coin[J]. Front Cell Dev Biol, 2021, 9:613534. doi: 10.3389/fcell.2021.613534. eCollection 2021.
doi: 10.3389/fcell.2021.613534 URL |
[7] |
Liang LJ, Yang Y, Wei WF, et al. Tumor-secreted exosomal Wnt2B activates fibroblasts to promote cervical cancer progression[J]. Oncogenesis, 2021, 10(3):30. doi: 10.1038/s41389-021-00319-w.
doi: 10.1038/s41389-021-00319-w URL |
[8] |
Sobierajska K, Ciszewski WM, Sacewicz-Hofman I, et al. Endothelial Cells in the Tumor Microenvironment[J]. Adv Exp Med Biol, 2020, 1234:71-86. doi: 10.1007/978-3-030-37184-5_6.
doi: 10.1007/978-3-030-37184-5_6 pmid: 32040856 |
[9] |
Ping Q, Yan R, Cheng X, et al. Cancer-associated fibroblasts: overview, progress, challenges, and directions[J]. Cancer Gene Ther, 2021, 28(9):984-999. doi: 10.1038/s41417-021-00318-4.
doi: 10.1038/s41417-021-00318-4 URL |
[10] |
den Boon JA, Pyeon D, Wang SS, et al. Molecular transitions from papillomavirus infection to cervical precancer and cancer: Role of stromal estrogen receptor signaling[J]. Proc Natl Acad Sci U S A, 2015, 112(25):E3255-E3264. doi: 10.1073/pnas.1509322112.
doi: 10.1073/pnas.1509322112 |
[11] |
Xiao L, Zhu H, Shu J, et al. Overexpression of TGF-beta1 and SDF-1 in cervical cancer-associated fibroblasts promotes cell growth, invasion and migration[J]. Arch Gynecol Obstet, 2022, 305(1):179-192. doi: 10.1007/s00404-021-06137-0.
doi: 10.1007/s00404-021-06137-0 URL |
[12] |
Fullar A, Dudas J, Olah L, et al. Remodeling of extracellular matrix by normal and tumor-associated fibroblasts promotes cervical cancer progression[J]. BMC Cancer, 2015, 15:256. doi: 10.1186/s12885-015-1272-3.
doi: 10.1186/s12885-015-1272-3 URL |
[13] |
Fullar A, Karaszi K, Hollosi P, et al. Two ways of epigenetic silencing of TFPI2 in cervical cancer[J]. PLoS One, 2020, 15(6):e234873. doi: 10.1371/journal.pone.0234873. eCollection 2020.
doi: 10.1371/journal.pone.0234873 |
[14] |
Zhang J, Wang Q, Quan Z. Long non-coding RNA CASC9 enhances breast cancer progression by promoting metastasis through the meditation of miR-215/TWIST2 signaling associated with TGF-beta expression[J]. Biochem Biophys Res Commun, 2019, 515(4):644-650. doi: 10.1016/j.bbrc.2019.05.080.
doi: 10.1016/j.bbrc.2019.05.080 URL |
[15] |
Wang Z, Liu J, Huang H, et al. Metastasis-associated fibroblasts: an emerging target for metastatic cancer[J]. Biomark Res, 2021, 9(1):47. doi: 10.1186/s40364-021-00305-9.
doi: 10.1186/s40364-021-00305-9 URL |
[16] |
Huang TH, Chu TY. Repression of miR-126 and upregulation of adrenomedullin in the stromal endothelium by cancer-stromal cross talks confers angiogenesis of cervical cancer[J]. Oncogene, 2014, 33(28):3636-3647. doi: 10.1038/onc.2013.335.
doi: 10.1038/onc.2013.335 pmid: 24037526 |
[17] |
Zhang X, Wang Y, Wang X, et al. Extracellular vesicles-encapsulated microRNA-10a-5p shed from cancer-associated fibroblast facilitates cervical squamous cell carcinoma cell angiogenesis and tumorigenicity via Hedgehog signaling pathway[J]. Cancer Gene Ther, 2021, 28(5):529-542. doi: 10.1038/s41417-020-00238-9.
doi: 10.1038/s41417-020-00238-9 pmid: 33235271 |
[18] |
Wu MP, Young MJ, Tzeng CC, et al. A novel role of thrombospondin-1 in cervical carcinogenesis: inhibit stroma reaction by inhibiting activated fibroblasts from invading cancer[J]. Carcinogenesis, 2008, 29(6):1115-1123. doi: 10.1093/carcin/bgn077.
doi: 10.1093/carcin/bgn077 URL |
[19] |
Walch-Ruckheim B, Stroder R, Theobald L, et al. Cervical Cancer-Instructed Stromal Fibroblasts Enhance IL23 Expression in Dendritic Cells to Support Expansion of Th17 Cells[J]. Cancer Res, 2019, 79(7):1573-1586. doi: 10.1158/0008-5472.CAN-18-1913.
doi: 10.1158/0008-5472.CAN-18-1913 pmid: 30696656 |
[20] |
Galazka K, Oplawski M, Windorbska W, et al. The immunohistochemical analysis of antigens such as RCAS1 and B7H4 in the cervical cancer nest and within the fibroblasts and macrophages infiltrating the cancer microenvironment[J]. Am J Reprod Immunol, 2012, 68(1):85-93. doi: 10.1111/j.1600-0897. 2012.01134.x.
doi: 10.1111/j.1600-0897. 2012.01134.x URL |
[21] |
Li B, Sui L. Metabolic reprogramming in cervical cancer and metabolomics perspectives[J]. Nutr Metab(Lond), 2021, 18(1):93. doi: 10.1186/s12986-021-00615-7.
doi: 10.1186/s12986-021-00615-7 |
[22] |
Druzhkova IN, Shirmanova MV, Lukina MM, et al. The metabolic interaction of cancer cells and fibroblasts-coupling between NAD(P)H and FAD, intracellular pH and hydrogen peroxide[J]. Cell Cycle, 2016, 15(9):1257-1266. doi: 10.1080/15384101. 2016.1160974.
doi: 10.1080/15384101.2016.1160974 pmid: 26986068 |
[23] |
Martinez-Outschoorn UE, Lisanti MP, Sotgia F. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth[J]. Semin Cancer Biol, 2014, 25:47-60. doi: 10.1016/j.semcancer.2014.01.005.
doi: 10.1016/j.semcancer.2014.01.005 pmid: 24486645 |
[24] |
Li Z, Sun C, Qin Z. Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming[J]. Theranostics, 2021, 11(17):8322-8336. doi: 10.7150/thno.62378.
doi: 10.7150/thno.62378 URL |
[25] |
郭楚鸿, 陈晓静, 王梓慈, 等. TAMs与CAFs联合预测子宫颈癌淋巴结转移研究[J]. 中国实用妇科与产科杂志, 2021, 37(4):478-481. doi: 10.19538/j.fk2021040117.
doi: 10.19538/j.fk2021040117 |
[26] |
Carvalho FM, Zaganelli FL, Almeida BG, et al. Prognostic value of podoplanin expression in intratumoral stroma and neoplastic cells of uterine cervical carcinomas[J]. Clinics (Sao Paulo), 2010, 65(12):1279-1283. doi: 10.1590/s1807-59322010001200009.
doi: 10.1590/s1807-59322010001200009 URL |
[27] |
Wei WF, Chen XJ, Liang LJ, et al. Periostin(+) cancer-associated fibroblasts promote lymph node metastasis by impairing the lymphatic endothelial barriers in cervical squamous cell carcinoma[J]. Mol Oncol, 2021, 15(1):210-227. doi: 10.1002/1878-0261. 12837.
doi: 10.1002/1878-0261. 12837 URL |
[28] |
Chu TY, Yang JT, Huang TH, et al. Crosstalk with cancer-associated fibroblasts increases the growth and radiation survival of cervical cancer cells[J]. Radiat Res, 2014, 181(5):540-547. doi: 10.1667/RR13583.1.
doi: 10.1667/RR13583.1 URL |
[29] |
Kim KH, Chang JS, Byun HK, et al. A novel gene signature associated with poor response to chemoradiotherapy in patients with locally advanced cervical cancer[J]. J Gynecol Oncol, 2022, 33(1):e7. doi: 10.3802/jgo.2022.33.e7.
doi: 10.3802/jgo.2022.33.e7 URL |
[30] |
Walter SG, Scheidt S, Nissler R, et al. In-Depth Characterization of Stromal Cells within the Tumor Microenvironment Yields Novel Therapeutic Targets[J]. Cancers (Basel), 2021, 13(6):1466. doi: 10.3390/cancers13061466.
doi: 10.3390/cancers13061466 URL |
[31] |
Pietras K, Pahler J, Bergers G, et al. Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting[J]. PLoS Med, 2008, 5(1):e19. doi: 10.1371/journal.pmed.0050019.
doi: 10.1371/journal.pmed.0050019 URL |
[32] |
Hassan RN, Luo H, Jiang W. Effects of Nicotinamide on Cervical Cancer-Derived Fibroblasts: Evidence for Therapeutic Potential[J]. Cancer Manag Res, 2020, 12:1089-1100. doi: 10.2147/CMAR.S229395.
doi: 10.2147/CMAR.S229395 pmid: 32104089 |
[33] |
Bromma K, Bannister A, Kowalewski A, et al. Elucidating the fate of nanoparticles among key cell components of the tumor microenvironment for promoting cancer nanotechnology[J]. Cancer Nanotechnol, 2020, 11(1):8. doi: 10.1186/s12645-020-00064-6.
doi: 10.1186/s12645-020-00064-6 pmid: 32849921 |
[34] |
De Gregorio V, La Rocca A, Urciuolo F, et al. Modeling the epithelial-mesenchymal transition process in a 3D organotypic doi: 10.1016/j.actbio.2020.09.006 URL |
[35] |
Zhou B, Yu Y, Yu L, et al. Sipi soup inhibits cancer-associated fibroblast activation and the inflammatory process by downregulating long noncoding RNA HIPK1AS[J]. Mol Med Rep, 2018, 18(2):1361-1368. doi: 10.3892/mmr.2018.9144.
doi: 10.3892/mmr.2018.9144 |
[1] | 许阡, 成九梅, 安圆圆. 外阴平滑肌瘤8例临床分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 467-470. |
[2] | 张丹莉, 石雪冬, 李建磊, 周立飞, 王文艺, 张萍萍, 李亚丽. KMT2D基因新发变异致歌舞伎面谱综合征一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 471-474. |
[3] | 刘思敏, 王佳丽, 张世霞, 魏佳, 杨永秀. 外阴隆突性皮肤纤维肉瘤一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 490-493. |
[4] | 田德吉尔, 冯晓玲. 肌肉肌醇与D-手性肌醇在多囊卵巢综合征中的研究及应用[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 512-517. |
[5] | 许阡, 成九梅. 宫颈脂肪平滑肌瘤17例临床分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 390-394. |
[6] | 饶慧, 卢娇兰, 周欢, 李雄. 子宫内膜中肾样腺癌累及宫颈管间质一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 410-414. |
[7] | 徐晓燕, 王笑璇. 卵巢妊娠破裂三例诊疗体会[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 309-312. |
[8] | 李丹萍, 连方, 相珊. 二甲双胍治疗多囊卵巢综合征的机制研究新进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 343-347. |
[9] | 王晶, 王晓慧. 子宫内膜小细胞神经内分泌癌一例并文献复习[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 212-215. |
[10] | 石百超, 常惠, 王宇, 卢凤娟, 王凯悦, 关木馨, 马良, 吴效科. 肠道菌群在多囊卵巢综合征中的作用机制[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 238-242. |
[11] | 王芳, 万桃, 杨永秀. 2型糖尿病相关子宫内膜癌与肠道菌群相关性的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 249-253. |
[12] | 李彦林, 何银芳. 产科抗磷脂综合征诊治现状[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 254-259. |
[13] | 程诗语, 石洁, 李艳丽, 高晗. 外阴硬化性苔藓的临床研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 260-264. |
[14] | 区晓榆, 曾宇华, 陈燕芬, 谢琳玲, 曾蕾, 卢如玲. MRKH综合征合并卵巢恶性肿瘤一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 121-126. |
[15] | 楚漫微, 陈欢欢, 王倩, 王祎玟, 李丹, 杨淑珺, 张翠莲. miR-20a在妇科常见恶性肿瘤中的作用机制[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 172-176. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||