国际生殖健康/计划生育杂志 ›› 2025, Vol. 44 ›› Issue (3): 236-241.doi: 10.12280/gjszjk.20240565
收稿日期:
2024-11-25
出版日期:
2025-05-15
发布日期:
2025-06-04
通讯作者:
马玉珍,E-mail:作者简介:
△审校者
Received:
2024-11-25
Published:
2025-05-15
Online:
2025-06-04
Contact:
MA Yu-zhen, E-mail: 摘要:
各种宫腔操作均可导致子宫内膜受损,表现为宫腔粘连、子宫内膜变薄,进而导致月经量减少、闭经,甚至可能影响生育能力。目前临床上对中重度子宫内膜损伤有效的治疗方法十分有限。间充质干细胞(mesenchymal stem cell,MSC)作为一种具有多向分化潜能的干细胞,通过其分化功能和分泌外泌体功能在组织修复和再生医学领域展现出巨大的潜力。通过阐述各种来源的MSC及其外泌体对子宫内膜损伤的治疗及机制,分析其临床前景及研究方向,为临床治疗子宫内膜损伤提供新的治疗思路及方向。
温碧超, 马玉珍. 间充质干细胞来源外泌体在子宫内膜损伤修复中的治疗作用[J]. 国际生殖健康/计划生育杂志, 2025, 44(3): 236-241.
WEN Bi-chao, MA Yu-zhen. Therapeutic Role of the Mesenchymal Stem Cell-Derived Exosome in Repairing Endometrial Injury[J]. Journal of International Reproductive Health/Family Planning, 2025, 44(3): 236-241.
[1] | 祝鑫瑜, 赵海燕, 王莉, 等. 不同负压对不全流产以及子宫内膜损伤的影响[J]. 华中科技大学学报(医学版), 2014, 43(1):106-108. doi: 10.3870/j.issn.1672-0741.2014.01.024. |
[2] |
Gilman AR, Dewar KM, Rhone SA, et al. Intrauterine Adhesions Following Miscarriage: Look and Learn[J]. J Obstet Gynaecol Can, 2016, 38(5):453-457. doi: 10.1016/j.jogc.2016.03.003.
pmid: 27261221 |
[3] |
Schenker JG, Margalioth EJ. Intrauterine adhesions: an updated appraisal[J]. Fertil Steril, 1982, 37(5):593-610. doi: 10.1016/s0015-0282(16)46268-0.
pmid: 6281085 |
[4] |
Gargett CE, Ye L. Endometrial reconstruction from stem cells[J]. Fertil Steril, 2012, 98(1):11-20. doi: 10.1016/j.fertnstert.2012.05.004.
pmid: 22657248 |
[5] |
Li B, Zhang Q, Sun J, et al. Human amniotic epithelial cells improve fertility in an intrauterine adhesion mouse model[J]. Stem Cell Res Ther, 2019, 10(1):257. doi: 10.1186/s13287-019-1368-9.
pmid: 31412924 |
[6] |
Gowen A, Shahjin F, Chand S, et al. Mesenchymal Stem Cell-Derived Extracellular Vesicles: Challenges in Clinical Applications[J]. Front Cell Dev Biol, 2020, 8:149. doi: 10.3389/fcell.2020.00149.
pmid: 32226787 |
[7] | Eremichev R, Kulebyakina M, Alexandrushkina N, et al. Scar-Free Healing of Endometrium: Tissue-Specific Program of Stromal Cells and Its Induction by Soluble Factors Produced After Damage[J]. Front Cell Dev Biol, 2021, 9:616893. doi: 10.3389/fcell.2021.616893. |
[8] | Spencer TE, Dunlap KA, Filant J. Comparative developmental biology of the uterus: insights into mechanisms and developmental disruption[J]. Mol Cell Endocrinol, 2012, 354(1/2):34-53. doi: 10.1016/j.mce.2011.09.035. |
[9] |
Spencer TE, Hayashi K, Hu J, et al. Comparative developmental biology of the mammalian uterus[J]. Curr Top Dev Biol, 2005, 68:85-122. doi: 10.1016/S0070-2153(05)68004-0.
pmid: 16124997 |
[10] |
Evans J, Salamonsen LA, Winship A, et al. Fertile ground: human endometrial programming and lessons in health and disease[J]. Nat Rev Endocrinol, 2016, 12(11):654-667. doi: 10.1038/nrendo.2016.116.
pmid: 27448058 |
[11] | Zhang X, Goncalves R, Mosser DM. The isolation and characterization of murine macrophages[J]. Curr Protoc Immunol, 2008, Chapter 14:14.1.1-14.1.14. doi: 10.1002/0471142735.im1401s83. |
[12] |
Santamaria X, Mas A, Cervelló I, et al. Uterine stem cells: from basic research to advanced cell therapies[J]. Hum Reprod Update, 2018, 24(6):673-693. doi: 10.1093/humupd/dmy028.
pmid: 30239705 |
[13] | Tempest N, Hill CJ, Maclean A, et al. Novel microarchitecture of human endometrial glands: implications in endometrial regeneration and pathologies[J]. Hum Reprod Update, 2022, 28(2):153-171. doi: 10.1093/humupd/dmab039. |
[14] | Moon S, Hwang S, Kim B, et al. Hippo Signaling in the Endometrium[J]. Int J Mol Sci, 2022, 23(7):3852. doi: 10.3390/ijms23073852. |
[15] | Valentijn AJ, Palial K, Al-Lamee H, et al. SSEA-1 isolates human endometrial basal glandular epithelial cells: phenotypic and functional characterization and implications in the pathogenesis of endometriosis[J]. Hum Reprod, 2013, 28(10):2695-2708. doi: 10.1093/humrep/det285. |
[16] |
Shaffer W. Role of uterine adhesions in the cause of multiple pregnancy losses[J]. Clin Obstet Gynecol, 1986, 29(4):912-924. doi: 10.1097/00003081-198612000-00016.
pmid: 3545591 |
[17] | Conforti A, Alviggi C, Mollo A, et al. The management of Asherman syndrome: a review of literature[J]. Reprod Biol Endocrinol, 2013, 11:118. doi: 10.1186/1477-7827-11-118. |
[18] | Deans R, Abbott J. Review of intrauterine adhesions[J]. J Minim Invasive Gynecol, 2010, 17(5):555-569. doi: 10.1016/j.jmig.2010.04.016. |
[19] |
Liu KE, Hartman M, Hartman A. Management of thin endometrium in assisted reproduction: a clinical practice guideline from the Canadian Fertility and Andrology Society[J]. Reprod Biomed Online, 2019, 39(1):49-62. doi: 10.1016/j.rbmo.2019.02.013.
pmid: 31029557 |
[20] | 邵小光, 魏晗, 房圣梓. 辅助生殖技术中薄型子宫内膜的诊断标准与临床处理[J]. 中国实用妇科与产科杂志, 2020, 36(6):496-500. doi: 10.19538/j.fk2020060105. |
[21] |
Liu F, Hu S, Wang S, et al. Cell and biomaterial-based approaches to uterus regeneration[J]. Regen Biomater, 2019, 6(3):141-148. doi: 10.1093/rb/rbz021.
pmid: 31198582 |
[22] | Mints M, Jansson M, Sadeghi B, et al. Endometrial endothelial cells are derived from donor stem cells in a bone marrow transplant recipient[J]. Hum Reprod, 2008, 23(1):139-143. doi: 10.1093/humrep/dem342. |
[23] | Cervelló I, Gil-Sanchis C, Mas A, et al. Bone marrow-derived cells from male donors do not contribute to the endometrial side population of the recipient[J]. PLoS One, 2012, 7(1):e30260. doi: 10.1371/journal.pone.0030260. |
[24] |
Gao L, Huang Z, Lin H, et al. Bone Marrow Mesenchymal Stem Cells (BMSCs) Restore Functional Endometrium in the Rat Model for Severe Asherman Syndrome[J]. Reprod Sci, 2019, 26(3):436-444. doi: 10.1177/1933719118799201.
pmid: 30458678 |
[25] |
Bonavina G, Mamillapalli R, Krikun G, et al. Bone marrow mesenchymal stem cell-derived exosomes shuttle microRNAs to endometrial stromal fibroblasts that promote tissue proliferation /regeneration/ and inhibit differentiation[J]. Stem Cell Res Ther, 2024, 15(1):129. doi: 10.1186/s13287-024-03716-1.
pmid: 38693588 |
[26] | Xiao B, Zhu Y, Liu M, et al. miR-340-3p-modified bone marrow mesenchymal stem cell-derived exosomes inhibit ferroptosis through METTL3-mediated m6A modification of HMOX1 to promote recovery of injured rat uterus[J]. Stem Cell Res Ther, 2024, 15(1):224. doi: 10.1186/s13287-024-03846-6. |
[27] | Santamaria X, Cabanillas S, Cervelló I, et al. Autologous cell therapy with CD133+ bone marrow-derived stem cells for refractory Asherman′s syndrome and endometrial atrophy: a pilot cohort study[J]. Hum Reprod, 2016, 31(5):1087-1096. doi: 10.1093/humrep/dew042. |
[28] |
Zhang L, Li Y, Guan CY, et al. Therapeutic effect of human umbilical cord-derived mesenchymal stem cells on injured rat endometrium during its chronic phase[J]. Stem Cell Res Ther, 2018, 9(1):36. doi: 10.1186/s13287-018-0777-5.
pmid: 29433563 |
[29] | Zheng JH, Zhang JK, Kong DS, et al. Quantification of the CM-Dil-labeled human umbilical cord mesenchymal stem cells migrated to the dual injured uterus in SD rat[J]. Stem Cell Res Ther, 2020, 11(1):280. doi: 10.1186/s13287-020-01806-4. |
[30] |
Xin L, Lin X, Zhou F, et al. A scaffold laden with mesenchymal stem cell-derived exosomes for promoting endometrium regeneration and fertility restoration through macrophage immunomodulation[J]. Acta Biomater, 2020, 113:252-266. doi: 10.1016/j.actbio.2020.06.029.
pmid: 32574858 |
[31] | Liang L, Wang L, Zhou S, et al. Exosomes derived from human umbilical cord mesenchymal stem cells repair injured endometrial epithelial cells[J]. J Assist Reprod Genet, 2020, 37(2):395-403. doi: 10.1007/s10815-019-01687-4. |
[32] | Zhang S, Wang D, Yang F, et al. Intrauterine Injection of Umbilical Cord Mesenchymal Stem Cell Exosome Gel Significantly Improves the Pregnancy Rate in Thin Endometrium Rats[J]. Cell Transplant, 2022, 31:9636897221133345. doi: 10.1177/09636897221133345. |
[33] |
Zhang Y, Shi L, Lin X, et al. Unresponsive thin endometrium caused by Asherman syndrome treated with umbilical cord mesenchymal stem cells on collagen scaffolds: a pilot study[J]. Stem Cell Res Ther, 2021, 12(1):420. doi: 10.1186/s13287-021-02499-z.
pmid: 34294152 |
[34] | Lv CX, Duan H, Wang S, et al. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Promote Proliferation of Allogeneic Endometrial Stromal Cells[J]. Reprod Sci, 2020, 27(6):1372-1381. doi: 10.1007/s43032-020-00165-y. |
[35] |
Shao X, Ai G, Wang L, et al. Adipose-derived stem cells transplantation improves endometrial injury repair[J]. Zygote, 2019, 27(6):367-374. doi: 10.1017/S096719941900042X.
pmid: 31452481 |
[36] | Hong J, Ahn H, Moon SY, et al. Effect of collagen endometrial patch loaded with adipose-derived mesenchymal stem cells on endometrial regeneration in rats with a thin endometrium[J]. Front Endocrinol(Lausanne), 2023, 14:1287789. doi: 10.3389/fendo.2023.1287789. |
[37] |
Zhao S, Qi W, Zheng J, et al. Exosomes Derived from Adipose Mesenchymal Stem Cells Restore Functional Endometrium in a Rat Model of Intrauterine Adhesions[J]. Reprod Sci, 2020, 27(6):1266-1275. doi: 10.1007/s43032-019-00112-6.
pmid: 31933162 |
[38] | Zhao YX, Chen SR, Huang QY, et al. Repair abilities of mouse autologous adipose-derived stem cells and ShakeGelTM 3D complex local injection with intrauterine adhesion by BMP7-Smad5 signaling pathway activation[J]. Stem Cell Res Ther, 2021, 12(1):191. doi: 10.1186/s13287-021-02258-0. |
[39] | Zhu H, Pan Y, Jiang Y, et al. Activation of the Hippo/TAZ pathway is required for menstrual stem cells to suppress myofibroblast and inhibit transforming growth factor β signaling in human endometrial stromal cells[J]. Hum Reprod, 2019, 34(4):635-645. doi: 10.1093/humrep/dez001. |
[40] | Tan J, Li P, Wang Q, et al. Autologous menstrual blood-derived stromal cells transplantation for severe Asherman′s syndrome[J]. Hum Reprod, 2016, 31(12):2723-2729. doi: 10.1093/humrep/dew235. |
[41] |
Cao Y, Sun H, Zhu H, et al. Allogeneic cell therapy using umbilical cord MSCs on collagen scaffolds for patients with recurrent uterine adhesion: a phase I clinical trial[J]. Stem Cell Res Ther, 2018, 9(1):192. doi: 10.1186/s13287-018-0904-3.
pmid: 29996892 |
[42] | 姜小花. 水凝胶微胶囊化间充质干细胞及其来源的外泌体对宫腔粘连的作用及机制研究[D]. 合肥: 安徽医科大学, 2023. |
[43] | Prakash R, Mishra RK, Ahmad A, et al. Sivelestat-loaded nanostructured lipid carriers modulate oxidative and inflammatory stress in human dental pulp and mesenchymal stem cells subjected to oxygen-glucose deprivation[J]. Mater Sci Eng C Mater Biol Appl, 2021, 120:111700. doi: 10.1016/j.msec.2020.111700. |
[1] | 袁梦, 李君芬, 吴岳霄, 杨永秀. 卵巢甲状腺肿类癌一例[J]. 国际生殖健康/计划生育杂志, 2025, 44(3): 211-214. |
[2] | 张梦宇, 尹耀学, 侯振. 子宫内膜异位症相关未破裂卵泡黄素化综合征的研究进展[J]. 国际生殖健康/计划生育杂志, 2025, 44(3): 253-258. |
[3] | 李稳安, 付胜蓝, 侯志金, 孟昱时. 肿瘤坏死因子-α及其抑制剂在生殖领域的研究进展[J]. 国际生殖健康/计划生育杂志, 2025, 44(3): 259-264. |
[4] | 潘如, 陈紫均, 杨海坤, 余祝英, 吴生盛. 子宫-膀胱间隙异位副神经节瘤诊治一例[J]. 国际生殖健康/计划生育杂志, 2025, 44(2): 128-131. |
[5] | 宋萌萌, 陈芳, 包香香, 田馨莉. PRMT5在妇科恶性肿瘤中的研究进展[J]. 国际生殖健康/计划生育杂志, 2025, 44(2): 171-176. |
[6] | 宫政, 赵晓丽, 王宝娟, 董融, 刘凇含, 王聪, 夏天. 宫寒型反复种植失败患者子宫内膜蛋白质组学研究[J]. 国际生殖健康/计划生育杂志, 2025, 44(1): 1-8. |
[7] | 石举梅, 赵婷玉, 杨新春, 张玉, 徐冉, 孙伟伟, 赵瑞华. 基于德尔菲法确定《子宫内膜异位症中西医结合诊疗指南》的临床问题[J]. 国际生殖健康/计划生育杂志, 2025, 44(1): 15-20. |
[8] | 石百超, 马红丽, 王宇, 朱梦一, 刘洋, 马颖琪, 吴效科. 生长分化因子15在妇产科疾病中的作用[J]. 国际生殖健康/计划生育杂志, 2025, 44(1): 78-83. |
[9] | 王冬雪, 包莉莉, 高冰倩, 马晓芳, 杨波. 子宫内膜异位症合并薄型内膜不孕患者的两种冻融胚胎移植方案比较[J]. 国际生殖健康/计划生育杂志, 2025, 44(1): 9-14. |
[10] | 许阡, 成九梅, 安圆圆. 外阴平滑肌瘤8例临床分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 467-470. |
[11] | 张丹莉, 石雪冬, 李建磊, 周立飞, 王文艺, 张萍萍, 李亚丽. KMT2D基因新发变异致歌舞伎面谱综合征一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 471-474. |
[12] | 苗贺瑱, 刘佳佳, 闫宇, 马国霞, 王晓慧. 一例罕见的宫颈子宫内膜异位症[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 475-478. |
[13] | 刘思敏, 王佳丽, 张世霞, 魏佳, 杨永秀. 外阴隆突性皮肤纤维肉瘤一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 490-493. |
[14] | 田德吉尔, 冯晓玲. 肌肉肌醇与D-手性肌醇在多囊卵巢综合征中的研究及应用[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 512-517. |
[15] | 许阡, 成九梅. 宫颈脂肪平滑肌瘤17例临床分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 390-394. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||