Journal of International Reproductive Health/Family Planning ›› 2022, Vol. 41 ›› Issue (1): 84-88.doi: 10.12280/gjszjk.20210297
• Review • Previous Articles
LUO Yi, ZHANG Dan-dan
Received:
2021-07-06
Published:
2022-01-15
Online:
2022-02-17
LUO Yi, ZHANG Dan-dan. Application of Machine Learning in the Diagnosis of Endometriosis[J]. Journal of International Reproductive Health/Family Planning, 2022, 41(1): 84-88.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Hirata T, Koga K, Kai K, et al. Clinical practice guidelines for the treatment of extragenital endometriosis in Japan, 2018[J]. J Obstet Gynaecol Res, 2020, 46(12):2474-2487. doi: 10.1111/jog.14522.
doi: 10.1111/jog.14522 URL |
[2] |
Ghiasi M, Kulkarni MT, Missmer SA. Is Endometriosis More Common and More Severe Than It Was 30 Years Ago?[J]. J Minim Invasive Gynecol, 2020, 27(2):452-461. doi: 10.1016/j.jmig.2019.11.018.
doi: 10.1016/j.jmig.2019.11.018 URL |
[3] |
中国医师协会妇产科医师分会子宫内膜异位症专业委员会, 中华医学会妇产科学分会子宫内膜异位症协作组. 子宫内膜异位症长期管理中国专家共识[J]. 中华妇产科杂志, 2018, 53(12):836-841. doi: 10.3760/cma.j.issn.0529-567x.2018.12.007.
doi: 10.3760/cma.j.issn.0529-567x.2018.12.007 |
[4] |
何清, 李宁, 罗文娟, 等. 大数据下的机器学习算法综述[J]. 模式识别与人工智能, 2014, 27(4):327-336. doi: 10.3969/j.issn.1003-6059.2014.04.007.
doi: 10.3969/j.issn.1003-6059.2014.04.007 |
[5] |
Lee KS, Ahn KH. Application of Artificial Intelligence in Early Diagnosis of Spontaneous Preterm Labor and Birth[J]. Diagnostics (Basel), 2020, 10(9):733. doi: 10.3390/diagnostics10090733.
doi: 10.3390/diagnostics10090733 |
[6] |
Kawakami E, Tabata J, Yanaihara N, et al. Application of Artificial Intelligence for Preoperative Diagnostic and Prognostic Prediction in Epithelial Ovarian Cancer Based on Blood Biomarkers[J]. Clin Cancer Res, 2019, 25(10):3006-3015. doi: 10.1158/1078-0432.CCR-18-3378.
doi: 10.1158/1078-0432.CCR-18-3378 pmid: 30979733 |
[7] |
Matta K, Vigneau E, Cariou V, et al. Associations between persistent organic pollutants and endometriosis: A multipollutant assessment using machine learning algorithms[J]. Environ Pollut, 2020, 260:114066. doi: 10.1016/j.envpol.2020.114066.
doi: 10.1016/j.envpol.2020.114066 URL |
[8] |
Matsuo K, Purushotham S, Jiang B, et al. Survival outcome prediction in cervical cancer: Cox models vs deep-learning model[J]. Am J Obstet Gynecol, 2019, 220(4):381.e1-e14. doi: 10.1016/j.ajog.2018.12.030.
doi: 10.1016/j.ajog.2018.12.030 |
[9] |
Barnett-Itzhaki Z, Elbaz M, Butterman R, et al. Machine learning vs. classic statistics for the prediction of IVF outcomes[J]. J Assist Reprod Genet, 2020, 37(10):2405-2412. doi: 10.1007/s10815-020-01908-1.
doi: 10.1007/s10815-020-01908-1 URL |
[10] |
Venkatesh KK, Strauss RA, Grotegut CA, et al. Machine Learning and Statistical Models to Predict Postpartum Hemorrhage[J]. Obstet Gynecol, 2020, 135(4):935-944. doi: 10.1097/AOG.0000000000
doi: 10.1097/AOG.0000000000003759 pmid: 32168227 |
003759.
pmid: 32168227 |
|
[11] |
Ye Y, Xiong Y, Zhou Q, et al. Comparison of Machine Learning Methods and Conventional Logistic Regressions for Predicting Gestational Diabetes Using Routine Clinical Data: A Retrospective Cohort Study[J]. J Diabetes Res, 2020, 2020:4168340. doi: 10.1155/2020/4168340.
doi: 10.1155/2020/4168340 |
[12] |
Muyldermans M, Cornillie FJ, Koninckx PR. CA125 and endometriosis[J]. Hum Reprod Update, 1995, 1(2):173-187. doi: 10.1093/humupd/1.2.173.
doi: 10.1093/humupd/1.2.173 pmid: 15726771 |
[13] |
Shen A, Xu S, Ma Y, et al. Diagnostic value of serum CA125, CA19-9 and CA15-3 in endometriosis: A meta-analysis[J]. J Int Med Res, 2015, 43(5):599-609. doi: 10.1177/0300060515583076.
doi: 10.1177/0300060515583076 URL |
[14] |
Parlatan U, Inanc MT, Ozgor BY, et al. Raman spectroscopy as a non-invasive diagnostic technique for endometriosis[J]. Sci Rep, 2019, 9(1):19795. doi: 10.1038/s41598-019-56308-y.
doi: 10.1038/s41598-019-56308-y pmid: 31875014 |
[15] |
袁家英, 张建华, 刘华. 基于智能算法的子宫内膜异位症辅助诊断模型的建立[J]. 医学信息, 2015, 28(28):53-54. doi: 10.3969/j.issn.1006-1959.2015.28.068.
doi: 10.3969/j.issn.1006-1959.2015.28.068 |
[16] |
Knific T, Fishman D, Vogler A, et al. Multiplex analysis of 40 cytokines do not allow separation between endometriosis patients and controls[J]. Sci Rep, 2019, 9(1):16738. doi: 10.1038/s41598-019-52899-8.
doi: 10.1038/s41598-019-52899-8 URL |
[17] |
Wang L, Zheng W, Yu JK, et al. Artificial neural networks combined with surface-enhanced laser desorption/ionization mass spectra distinguish endometriosis from healthy population[J]. Fertil Steril, 2007, 88(6):1700-1702. doi: 10.1016/j.fertnstert.2007.01.055.
doi: 10.1016/j.fertnstert.2007.01.055 URL |
[18] |
Wang L, Zheng W, Mu L, et al. Identifying biomarkers of endometriosis using serum protein fingerprinting and artificial neural networks[J]. Int J Gynaecol Obstet, 2008, 101(3):253-258. doi: 10.1016/j.ijgo.2008.01.018.
doi: 10.1016/j.ijgo.2008.01.018 URL |
[19] |
Wang L, Zheng W, Ding XY, et al. Identification biomarkers of eutopic endometrium in endometriosis using artificial neural networks and protein fingerprinting[J]. Fertil Steril, 2010, 93(7):2460-2462. doi: 10.1016/j.fertnstert.2009.08.061.
doi: 10.1016/j.fertnstert.2009.08.061 URL |
[20] |
Li B, Wang S, Duan H, et al. Discovery of gene module acting on ubiquitin-mediated proteolysis pathway by co-expression network analysis for endometriosis[J]. Reprod Biomed Online, 2021, 42(2):429-441. doi: 10.1016/j.rbmo.2020.10.005.
doi: 10.1016/j.rbmo.2020.10.005 URL |
[21] | Akter S, Xu D, Nagel SC, et al. GenomeForest: An Ensemble Machine Learning Classifier for Endometriosis[J]. AMIA Jt Summits Transl Sci Proc, 2020, 2020:33-42. |
[22] |
Akter S, Xu D, Nagel SC, et al. Machine Learning Classifiers for Endometriosis Using Transcriptomics and Methylomics Data[J]. Front Genet, 2019, 10:766. doi: 10.3389/fgene.2019.00766.
doi: 10.3389/fgene.2019.00766 URL |
[23] |
Moustafa S, Burn M, Mamillapalli R, et al. Accurate diagnosis of endometriosis using serum microRNAs[J]. Am J Obstet Gynecol, 2020, 223(4): 557.e1-e11. doi: 10.1016/j.ajog.2020.02.050.
doi: 10.1016/j.ajog.2020.02.050 |
[24] |
Zhu H, Bao J, Liu S, et al. Null genotypes of GSTM1 and GSTT1 and endometriosis risk: a meta-analysis of 25 case-control studies[J]. PLoS One, 2014, 9(9):e106761. doi: 10.1371/journal.pone.0106761.
doi: 10.1371/journal.pone.0106761 URL |
[25] |
Crestani A, Abdel Wahab C, Arfi A, et al. A short anogenital distance on MRI is a marker of endometriosis[J]. Hum Reprod Open, 2021, 2021(1):hoab003. doi: 10.1093/hropen/hoab003.
doi: 10.1093/hropen/hoab003 |
[26] |
Missmer SA, Chavarro JE, Malspeis S, et al. A prospective study of dietary fat consumption and endometriosis risk[J]. Hum Reprod, 2010, 25(6):1528-1535. doi: 10.1093/humrep/deq044.
doi: 10.1093/humrep/deq044 URL |
[27] |
Harris HR, Wieser F, Vitonis AF, et al. Early life abuse and risk of endometriosis[J]. Hum Reprod, 2018, 33(9):1657-1668. doi: 10.1093/humrep/dey248.
doi: 10.1093/humrep/dey248 URL |
[28] |
Bouaziz J, Mashiach R, Cohen S, et al. How Artificial Intelligence Can Improve Our Understanding of the Genes Associated with Endometriosis: Natural Language Processing of the PubMed Database[J]. Biomed Res Int, 2018, 2018:6217812. doi: 10.1155/2018/6217812.
doi: 10.1155/2018/6217812 pmid: 29750165 |
[29] |
Perrotta AR, Borrelli GM, Martins CO, et al. The Vaginal Microbiome as a Tool to Predict rASRM Stage of Disease in Endometriosis: a Pilot Study[J]. Reprod Sci, 2020, 27(4):1064-1073. doi: 10.1007/s43032-019-00113-5.
doi: 10.1007/s43032-019-00113-5 pmid: 32046455 |
[30] |
Guerriero S, Pascual M, Ajossa S, et al. Artificial intelligence (AI) in the detection of rectosigmoid deep endometriosis[J]. Eur J Obstet Gynecol Reprod Biol, 2021, 261:29-33. doi: 10.1016/j.ejogrb.2021. 04.012.
doi: 10.1016/j.ejogrb.2021.04.012 pmid: 33873085 |
[31] |
Loring M, Kabelac Z, Munir U, et al. Novel Technology to Capture Objective Data from Patients′ Recovery from Laparoscopic Endometriosis Surgery[J]. J Minim Invasive Gynecol, 2021, 28(2):325-331. doi: 10.1016/j.jmig.2020.06.011.
doi: 10.1016/j.jmig.2020.06.011 URL |
[1] | XU Qian, CHENG Jiu-mei, AN Yuan-yuan. Clinical Analysis of 8 Cases of Vulvar Leiomyoma [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 467-470. |
[2] | MIAO He-zhen, LIU Jia-jia, YAN Yu, MA Guo-xia, WANG Xiao-hui. A Rare Case of Cervical Endometriosis [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 475-478. |
[3] | LIU Si-min, WANG Jia-li, ZHANG Shi-xia, WEI Jia, YANG Yong-xiu. Dermatofibrosarcoma Protuberans of Vulva: A Case Report [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 490-493. |
[4] | XU Qian, CHENG Jiu-mei. Clinical Analysis of 17 Cases of Cervical Lipoleiomyoma [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 390-394. |
[5] | RAO Hui, LU Jiao-lan, ZHOU Huan, LI Xiong. Mesonephric-Like Adenocarcinoma of the Endometrium Involving Cervical Interstitium: A Case Report [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 410-414. |
[6] | FU Wan-yu, JIN Sha-wen, JIANG Yu-ying, LI Yan-qing. Clinical Effect of Noninvasive Prenatal Screening Techniques for Rare Autosomal Trisomies and Chromosome Copy Number Variation [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 279-283. |
[7] | ZHUANG Jian-long, XU Wei-xiong, JIANG Yu-ying. Whole Exome Sequencing Identified A 7q36.3 Microduplication in A Fetus with Polysyndactyly [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 284-288. |
[8] | LIU Fu-rong, ZHANG Chuan, ZHOU Bing-bo, CHEN Xue, TIAN Xin-yuan, MA Pan-pan, HUI Ling, HAO Sheng-ju. Preliminary Study on Expanded Carrier Screening of Couples of Childbearing Age in Gansu [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 293-297. |
[9] | XU Xiao-yan, WANG Xiao-xuan. Diagnosis and Treatment of Three Cases of Ovarian Pregnancy Rupture [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 309-312. |
[10] | HE Ling, KUAI Dan, ZHANG Yan-fang, TIAN Wen-yan, ZHANG Hui-ying. Multidimensional Evaluation of Abnormal Uterine Bleeding in Adolescence [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 338-342. |
[11] | WANG Jing, WANG Xiao-hui. Small Cell Neuroendocrine Carcinoma of the Endometrium: A Case Report and Literature Review [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 212-215. |
[12] | GAO Zhao-yang, ZHANG Ning-qing, CHEN Qiong-hua, WU Rong-feng. The Role of CircRNAs in Follicular Granulosa Cells of Patients with Endometriosis Infertility [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 243-248. |
[13] | LI Yan-lin, HE Yin-fang. Progress in the Diagnosis and Treatment of Obstetric Antiphospholipid Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 254-259. |
[14] | CHENG Shi-yu, SHI Jie, LI Yan-li, GAO Han. Clinical Research Progress of Vulvar Lichen Sclerosus [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 260-264. |
[15] | ZHOU Jia-yan, DONG Hai-wei, SHI Yun-fang. Fetus with Hydrocephalus and Walker-Warburg Syndrome: A Case Report [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 108-110. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||