Journal of International Reproductive Health/Family Planning ›› 2022, Vol. 41 ›› Issue (5): 404-408.doi: 10.12280/gjszjk.20220225
• Review • Previous Articles Next Articles
Received:
2022-04-27
Published:
2022-09-15
Online:
2022-10-12
Contact:
XIAO Zhuo-ni
E-mail:RM001111@whu.edu.cn
ZHANG Yan, XIAO Zhuo-ni. Metabolic Regulation of Immune Cells at the Maternal-Fetal Interface and Related Pregnancy Complications[J]. Journal of International Reproductive Health/Family Planning, 2022, 41(5): 404-408.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Xu L, Li Y, Sang Y, et al. Crosstalk Between Trophoblasts and Decidual Immune Cells: The Cornerstone of Maternal-Fetal Immunotolerance[J]. Front Immunol, 2021, 12:642392. doi: 10.3389/fimmu.2021.642392.
doi: 10.3389/fimmu.2021.642392 URL |
[2] |
Loftus RM, Finlay DK. Immunometabolism: Cellular Metabolism Turns Immune Regulator[J]. J Biol Chem, 2016, 291(1):1-10. doi: 10.1074/jbc.R115.693903.
doi: 10.1074/jbc.R115.693903 pmid: 26534957 |
[3] |
Rees A, Richards O, Chambers M, et al. Immunometabolic adaptation and immune plasticity in pregnancy and the bi-directional effects of obesity[J]. Clin Exp Immunol, 2022, 208(2):132-146. doi: 10.1093/cei/uxac003.
doi: 10.1093/cei/uxac003 URL |
[4] |
Jia N, Li J. Human Uterine Decidual NK Cells in Women with a History of Early Pregnancy Enhance Angiogenesis and Trophoblast Invasion[J]. Biomed Res Int, 2020, 2020:6247526. doi: 10.1155/2020/6247526.
doi: 10.1155/2020/6247526 |
[5] |
Schafer JR, Salzillo TC, Chakravarti N, et al. Education-dependent activation of glycolysis promotes the cytolytic potency of licensed human natural killer cells[J]. J Allergy Clin Immunol, 2019, 143(1):346-358.e6. doi: 10.1016/j.jaci.2018.06.047.
doi: S0091-6749(18)31133-3 pmid: 30096390 |
[6] |
Cong J, Wang X, Zheng X, et al. Dysfunction of Natural Killer Cells by FBP1-Induced Inhibition of Glycolysis during Lung Cancer Progression[J]. Cell Metab, 2018, 28(2):243-255.e5. doi: 10.1016/j.cmet.2018.06.021.
doi: S1550-4131(18)30443-1 pmid: 30033198 |
[7] |
Martí I Líndez AA, Reith W. Arginine-dependent immune responses[J]. Cell Mol Life Sci, 2021, 78(13):5303-5324. doi: 10.1007/s00018-021-03828-4.
doi: 10.1007/s00018-021-03828-4 URL |
[8] |
Aydin E, Johansson J, Nazir FH, et al. Role of NOX2-Derived Reactive Oxygen Species in NK Cell-Mediated Control of Murine Melanoma Metastasis[J]. Cancer Immunol Res, 2017, 5(9):804-811. doi: 10.1158/2326-6066.CIR-16-0382.
doi: 10.1158/2326-6066.CIR-16-0382 pmid: 28760732 |
[9] |
Michelet X, Dyck L, Hogan A, et al. Metabolic reprogramming of natural killer cells in obesity limits antitumor responses[J]. Nat Immunol, 2018, 19(12):1330-1340. doi: 10.1038/s41590-018-0251-7.
doi: 10.1038/s41590-018-0251-7 pmid: 30420624 |
[10] |
Zhang T, Shen HH, Qin XY, et al. The metabolic characteristic of decidual immune cells and their unique properties in pregnancy loss[J]. Immunol Rev, 2022, 308(1):168-186. doi: 10.1111/imr.13085.
doi: 10.1111/imr.13085 pmid: 35582842 |
[11] |
Yan S, Dong J, Qian C, et al. The mTORC1 Signaling Support Cellular Metabolism to Dictate Decidual NK Cells Function in Early Pregnancy[J]. Front Immunol, 2022, 13:771732. doi: 10.3389/fimmu.2022.771732.
doi: 10.3389/fimmu.2022.771732 URL |
[12] |
Jiang L, Fei H, Jin X, et al. Extracellular Vesicle-Mediated Secretion of HLA-E by Trophoblasts Maintains Pregnancy by Regulating the Metabolism of Decidual NK Cells[J]. Int J Biol Sci, 2021, 17(15):4377-4395. doi: 10.7150/ijbs.63390.
doi: 10.7150/ijbs.63390 pmid: 34803505 |
[13] |
Kasture V, Sahay A, Joshi S. Cell death mechanisms and their roles in pregnancy related disorders[J]. Adv Protein Chem Struct Biol, 2021, 126:195-225. doi: 10.1016/bs.apcsb.2021.01.006.
doi: 10.1016/bs.apcsb.2021.01.006 pmid: 34090615 |
[14] |
Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9):6425-6440. doi: 10.1002/jcp.26429.
doi: 10.1002/jcp.26429 pmid: 29319160 |
[15] |
De Santa F, Vitiello L, Torcinaro A, et al. The Role of Metabolic Remodeling in Macrophage Polarization and Its Effect on Skeletal Muscle Regeneration[J]. Antioxid Redox Signal, 2019, 30(12):1553-1598. doi: 10.1089/ars.2017.7420.
doi: 10.1089/ars.2017.7420 URL |
[16] |
Ma LN, Huang XB, Muyayalo KP, et al. Lactic Acid: A Novel Signaling Molecule in Early Pregnancy?[J]. Front Immunol, 2020, 11:279. doi: 10.3389/fimmu.2020.00279.
doi: 10.3389/fimmu.2020.00279 URL |
[17] |
Tirpe AA, Gulei D, Ciortea SM, et al. Hypoxia: Overview on Hypoxia-Mediated Mechanisms with a Focus on the Role of HIF Genes[J]. Int J Mol Sci, 2019, 20(24):6140. doi: 10.3390/ijms20246140.
doi: 10.3390/ijms20246140 URL |
[18] |
Yang Z, Ming XF. Functions of arginase isoforms in macrophage inflammatory responses: impact on cardiovascular diseases and metabolic disorders[J]. Front Immunol, 2014, 5:533. doi: 10.3389/fimmu.2014.00533.
doi: 10.3389/fimmu.2014.00533 pmid: 25386179 |
[19] |
Huang HL, Yang HL, Lai ZZ, et al. Decidual IDO(+) macrophage promotes the proliferation and restricts the apoptosis of trophoblasts[J]. J Reprod Immunol, 2021, 148:103364. doi: 10.1016/j.jri.2021.103364.
doi: 10.1016/j.jri.2021.103364 URL |
[20] |
Gao L, Xu QH, Ma LN, et al. Trophoblast-derived Lactic Acid Orchestrates Decidual Macrophage Differentiation via SRC/LDHA Signaling in Early Pregnancy[J]. Int J Biol Sci, 2022, 18(2):599-616. doi: 10.7150/ijbs.67816.
doi: 10.7150/ijbs.67816 pmid: 35002512 |
[21] |
Zhou WJ, Yang HL, Mei J, et al. Fructose-1,6-bisphosphate prevents pregnancy loss by inducing decidual COX-2(+) macrophage differentiation[J]. Sci Adv, 2022, 8(8):eabj2488. doi: 10.1126/sciadv.abj2488.
doi: 10.1126/sciadv.abj2488 URL |
[22] |
Wang W, Sung N, Gilman-Sachs A, et al. T Helper (Th) Cell Profiles in Pregnancy and Recurrent Pregnancy Losses: Th1/Th2/Th9/Th17/Th22/Tfh Cells[J]. Front Immunol, 2020, 11:2025. doi: 10.3389/fimmu.2020.02025.
doi: 10.3389/fimmu.2020.02025 pmid: 32973809 |
[23] |
Sharabi A, Tsokos GC. T cell metabolism: new insights in systemic lupus erythematosus pathogenesis and therapy[J]. Nat Rev Rheumatol, 2020, 16(2):100-112. doi: 10.1038/s41584-019-0356-x.
doi: 10.1038/s41584-019-0356-x pmid: 31949287 |
[24] |
Kono M, Yoshida N, Maeda K, et al. Pyruvate dehydrogenase phosphatase catalytic subunit 2 limits Th17 differentiation[J]. Proc Natl Acad Sci U S A, 2018, 115(37):9288-9293. doi: 10.1073/pnas.1805717115.
doi: 10.1073/pnas.1805717115 pmid: 30150402 |
[25] |
Fischer K, Hoffmann P, Voelkl S, et al. Inhibitory effect of tumor cell-derived lactic acid on human T cells[J]. Blood, 2007, 109(9):3812-3819. doi: 10.1182/blood-2006-07-035972.
doi: 10.1182/blood-2006-07-035972 pmid: 17255361 |
[26] |
Bailis W, Shyer JA, Zhao J, et al. Distinct modes of mitochondrial metabolism uncouple T cell differentiation and function[J]. Nature, 2019, 571(7765):403-407. doi: 10.1038/s41586-019-1311-3.
doi: 10.1038/s41586-019-1311-3 URL |
[27] |
Cheng H, Huang Y, Huang G, et al. Effect of the IDO Gene on Pregnancy in Mice with Recurrent Pregnancy Loss[J]. Reprod Sci, 2021, 28(1):52-59. doi: 10.1007/s43032-020-00264-w.
doi: 10.1007/s43032-020-00264-w URL |
[28] |
Daneshmandi S, Cassel T, Higashi RM, et al. 6-Phosphogluconate dehydrogenase (6PGD), a key checkpoint in reprogramming of regulatory T cells metabolism and function[J]. Elife, 2021, 10:e67476. doi: 10.7554/eLife.67476.
doi: 10.7554/eLife.67476 URL |
[29] |
Daneshmandi S, Cassel T, Lin P, et al. Blockade of 6-phosphogluconate dehydrogenase generates CD8(+) effector T cells with enhanced anti-tumor function[J]. Cell Rep, 2021, 34(10):108831. doi: 10.1016/j.celrep.2021.108831.
doi: 10.1016/j.celrep.2021.108831 URL |
[30] |
Cai F, Jin S, Chen G. The Effect of Lipid Metabolism on CD4(+) T Cells[J]. Mediators Inflamm, 2021, 2021:6634532. doi: 10.1155/2021/6634532.
doi: 10.1155/2021/6634532 |
[31] |
Thwe PM, Amiel E. The role of nitric oxide in metabolic regulation of Dendritic cell immune function[J]. Cancer Lett, 2018, 412:236-242. doi: 10.1016/j.canlet.2017.10.032.
doi: S0304-3835(17)30669-9 pmid: 29107106 |
[32] |
Wculek SK, Khouili SC, Priego E, et al. Metabolic Control of Dendritic Cell Functions: Digesting Information[J]. Front Immunol, 2019, 10:775. doi: 10.3389/fimmu.2019.00775.
doi: 10.3389/fimmu.2019.00775 pmid: 31073300 |
[33] |
Everts B, Amiel E, Huang SC, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKε supports the anabolic demands of dendritic cell activation[J]. Nat Immunol, 2014, 15(4):323-332. doi: 10.1038/ni.2833.
doi: 10.1038/ni.2833 pmid: 24562310 |
[34] |
Mellor AL, Lemos H, Huang L. Indoleamine 2,3-Dioxygenase and Tolerance: Where Are We Now?[J]. Front Immunol, 2017, 8:1360. doi: 10.3389/fimmu.2017.01360.
doi: 10.3389/fimmu.2017.01360 pmid: 29163470 |
[35] |
Giovanelli P, Sandoval TA, Cubillos-Ruiz JR. Dendritic Cell Metabolism and Function in Tumors[J]. Trends Immunol, 2019, 40(8):699-718. doi: 10.1016/j.it.2019.06.004.
doi: S1471-4906(19)30127-9 pmid: 31301952 |
[1] | WANG Jia-yi, JI Hui, LI Xin, LING Xiu-feng. Effect of Serum β-hCG Level on the Next Day of Dual Trigger in Antagonist Regimen on the Outcome of Fresh Embryo Transfer [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 447-452. |
[2] | WANG Yue, TANG Cen, LI Ya-jin, HU Wan-qin. Risk Factors of Adverse Pregnancy Outcomes in Patients with Undifferentiated Connective Tissue Disease and Construction of A Nomogram Model for Predicting [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 453-457. |
[3] | GAO Xiao-li, SU Jing, LI Zeng-yan, LI Jie. Clinical Analysis of 14 Cases of Pregnancy-Associated Hemolytic Uremic Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 458-461. |
[4] | GAO Zheng, LI Meng-yuan, LI Bo, LIANG Jing-qiao, ZHANG Ya-dong, XU Xin. Efficacy of Chinese Medicine Compound on Abnormal Glucose and Lipid Metabolism in Patients with Obese Polycystic Ovary Syndrome: A Meta Analysis [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 368-377. |
[5] | WU Ying-ying, DU Xin. A Case of Full-Term Pregnancy after Single-Port Laparoscopic Debulking of Multiple Uterine Fibroids in Mid-Pregnancy [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 406-409. |
[6] | LUO Sha-sha, WANG De-jing. Analysis of Influencing Factors of Frozen-Thawed Embryo Transfer Pregnancy Outcome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 420-424. |
[7] | XIE Yu-xin, WANG Rui-xue, CHEN Meng-na, CHU Ji-jun. The Role of Annexin A Family at Maternal-Fetal Interface and Related Adverse Pregnancy [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 430-434. |
[8] | WU Yu-xuan, MENG Zi-fan, DONG Li, JI Hui. The Effect of Time Interval between Hysteroscopic Polypectomy and Start of Frozen-Thawed Embryo Transfer Cycles on Pregnancy Outcomes [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 274-278. |
[9] | XU Xiao-yan, WANG Xiao-xuan. Diagnosis and Treatment of Three Cases of Ovarian Pregnancy Rupture [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 309-312. |
[10] | LIU Fang-lei, FENG Xiao-ling. The Correlation between Thyroid-Related Hormones and Preeclampsia [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 348-352. |
[11] | LI Ning, ZHANG An-ni, HE Xiao-xia, ZHANG Xue-hong. A Nomogram Prediction Model for Gestational Hypertension after Frozen Embryo Transfer [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 177-184. |
[12] | WANG Dong-xue, BAO Li-li, LIU Shan, YANG Bo. Effect of Modified Flexible Antagonist Protocol on the Outcome of COH in Patients with Normal Ovarian Function [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 185-189. |
[13] | XIA Meng-yao, YANG Ling, ZHAO Fei, GUO Lu-lu, WANG Feng-qing. A Case of Early Abdominal Pregnancy Rupture [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 204-206. |
[14] | SHI Bai-chao, CHANG Hui, WANG Yu, LU Feng-juan, WANG Kai-yue, GUAN Mu-xin, MA Liang, WU Xiao-ke. The Role of Gut Microbiota in Patients with Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 238-242. |
[15] | LI Yan-lin, HE Yin-fang. Progress in the Diagnosis and Treatment of Obstetric Antiphospholipid Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 254-259. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||