国际生殖健康/计划生育 ›› 2021, Vol. 40 ›› Issue (6): 499-503.doi: 10.12280/gjszjk.20210244
收稿日期:
2021-06-02
出版日期:
2021-11-15
发布日期:
2021-11-30
通讯作者:
张慧英
E-mail:huiying_zhang2020@126.com
基金资助:
WANG Li-na, YAO Li-jun, ZHANG Hui-ying()
Received:
2021-06-02
Published:
2021-11-15
Online:
2021-11-30
Contact:
ZHANG Hui-ying
E-mail:huiying_zhang2020@126.com
摘要:
子宫内膜息肉(endometrial polyps,EPs)是指由子宫内膜腺体及含有血管的纤维化子宫内膜间质构成的突出于子宫内膜表面的一种病变。EPs是一常见妇科疾病,随着宫腔镜等技术的广泛应用,EPs的诊治水平显著提高,但其发病机制仍不明确。随着分子生物学及测序技术的应用,多项研究表明健康女性上、下生殖道均存在微生物群定植且两者组成不同。近年研究发现,生殖道微生物群改变与女性生殖健康密切相关,与EPs发病的相关性成为研究热点之一。微生物群可能通过影响局部免疫调控、介导炎症反应、改变激素水平、增加致病微生物数量和影响细胞增殖/凋亡等方面参与EPs的发生发展。综述生殖道微生物群与EPs发病关系的研究进展,以期为EPs的发病机制研究提供参考。
王立娜, 要丽君, 张慧英. 生殖道微生物群与子宫内膜息肉[J]. 国际生殖健康/计划生育, 2021, 40(6): 499-503.
WANG Li-na, YAO Li-jun, ZHANG Hui-ying. Genital Tract Microbiota and Endometrial Polyps[J]. Journal of International Reproductive Health/Family Planning, 2021, 40(6): 499-503.
[1] |
Al-Nasiry S, Ambrosino E, Schlaepfer M, et al. The Interplay Between Reproductive Tract Microbiota and Immunological System in Human Reproduction[J]. Front Immunol, 2020, 11:378. doi: 10.3389/fimmu.2020.00378.
doi: 10.3389/fimmu.2020.00378 pmid: 32231664 |
[2] |
Champer M, Wong AM, Champer J, et al. The role of the vaginal microbiome in gynaecological cancer[J]. BJOG, 2018, 125(3):309-315. doi: 10.1111/1471-0528.14631.
doi: 10.1111/1471-0528.14631 URL |
[3] |
Zhou JZ, Way SS, Chen K. Immunology of the Uterine and Vaginal Mucosae[J]. Trends Immunol, 2018, 39(4):302-314. doi: 10.1016/j.it.2018.01.007.
doi: 10.1016/j.it.2018.01.007 URL |
[4] |
Ata B, Yildiz S, Turkgeldi E, et al. The Endobiota Study: Comparison of Vaginal, Cervical and Gut Microbiota Between Women with Stage 3/4 Endometriosis and Healthy Controls[J]. Sci Rep, 2019, 9(1):2204. doi: 10.1038/s41598-019-39700-6.
doi: 10.1038/s41598-019-39700-6 URL |
[5] |
Chen C, Song X, Wei W, et al. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases[J]. Nat Commun, 2017, 8(1):875. doi: 10.1038/s41467-017-00901-0.
doi: 10.1038/s41467-017-00901-0 pmid: 29042534 |
[6] |
Mitchell CM, Haick A, Nkwopara E, et al. Colonization of the upper genital tract by vaginal bacterial species in nonpregnant women[J]. Am J Obstet Gynecol, 2015, 212(5):611.e1-9. doi: 10.1016/j.ajog.2014.11.043.
doi: 10.1016/j.ajog.2014.11.043 URL |
[7] |
Molina NM, Sola-Leyva A, Saez-Lara MJ, et al. New Opportunities for Endometrial Health by Modifying Uterine Microbial Composition: Present or Future?[J]. Biomolecules, 2020, 10(4):593. doi: 10.3390/biom10040593.
doi: 10.3390/biom10040593 URL |
[8] | Fang RL, Chen LX, Shu WS, et al. Barcoded sequencing reveals diverse intrauterine microbiomes in patients suffering with endometrial polyps[J]. Am J Transl Res, 2016, 8(3):1581-1592. |
[9] |
Moreno I, Codoñer FM, Vilella F, et al. Evidence that the endometrial microbiota has an effect on implantation success or failure[J]. Am J Obstet Gynecol, 2016, 215(6):684-703. doi: 10.1016/j.ajog.2016.09.075.
doi: 10.1016/j.ajog.2016.09.075 URL |
[10] |
Pelzer ES, Willner D, Buttini M, et al. The fallopian tube microbiome: implications for reproductive health[J]. Oncotarget, 2018, 9(30):21541-21551. doi: 10.18632/oncotarget.25059.
doi: 10.18632/oncotarget.25059 pmid: 29765558 |
[11] |
Usman SF, Shuaibu IR, Durojaiye K, et al. The presence of microorganisms in follicular fluid and its effect on the outcome of in vitro fertilization-embryo transfer (IVF-ET) treatment cycles[J]. PLoS One, 2021, 16(2):e0246644. doi: 10.1371/journal.pone.0246644.
doi: 10.1371/journal.pone.0246644 URL |
[12] |
Altmäe S. Commentary: Uterine Microbiota: Residents, Tourists, or Invaders?[J]. Front Immunol, 2018, 9:1874. doi: 10.3389/fimmu.2018.01874.
doi: 10.3389/fimmu.2018.01874 pmid: 30197640 |
[13] | Marchenko LA, Chernukha GE, Yakushevskaya OV, et al. Clinical and Microbiological Aspects of Chronic Endometritis in Women of Reproductive Age[J]. Antibiot Khimioter, 2016, 61(9/10):44-51. |
[14] |
Kovalenko VL, Voropaeva EE, Kozachkov EL, et al. Endometrial pathomorphology in bacterial vaginosis associated with chronic endometritis[J]. Arkh Patol, 2008, 70(2):6-8.
pmid: 18540431 |
[15] |
Horban NY, Vovk IB, Lysiana TO, et al. Peculiarities of Uterine Cavity Biocenosis in Patients with Different Types of Endometrial Hyperproliferative Pathology[J]. J Med Life, 2019, 12(3):266-270. doi: 10.25122/jml-2019-0074.
doi: 10.25122/jml-2019-0074 URL |
[16] | Sklyarova V, Kyshakevych I, Volosovsky P, et al. Epidemiological features of chronic endometritis in reproductive age women with disorders of reproductive health[J]. Georgian Med News, 2020 Jul-Aug;(304/305):27-32. |
[17] |
陈倩莹, 杨兆林, 陈茵, 等. 子宫内膜息肉患者生殖道解脲支原体、人型支原体感染情况分析及其诊断价值[J]. 中国医药科学, 2020, 10(13):87-90. doi: 10.3969/j.issn.2095-0616.2020.13.023.
doi: 10.3969/j.issn.2095-0616.2020.13.023 |
[18] |
Cicinelli E, De Ziegler D, Nicoletti R, et al. Poor reliability of vaginal and endocervical cultures for evaluating microbiology of endometrial cavity in women with chronic endometritis[J]. Gynecol Obstet Invest, 2009, 68(2):108-115. doi: 10.1159/000223819.
doi: 10.1159/000223819 URL |
[19] |
Chee W, Chew SY, Than L. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health[J]. Microb Cell Fact, 2020, 19(1):203. doi: 10.1186/s12934-020-01464-4.
doi: 10.1186/s12934-020-01464-4 URL |
[20] |
Saito S, Kakizaki N, Okuno A, et al. Lactococcus lactis subsp. Cremoris C60 restores T Cell Population in Small Intestinal Lamina Propria in Aged Interleukin-18 Deficient Mice[J]. Nutrients, 2020, 12(11):3287. doi: 10.3390/nu12113287.
doi: 10.3390/nu12113287 URL |
[21] |
Wu L, Lv C, Su Y, et al. Expression of programmed death-1 (PD-1) and its ligand PD-L1 is upregulated in endometriosis and promoted by 17beta-estradiol[J]. Gynecol Endocrinol, 2019, 35(3):251-256. doi: 10.1080/09513590.2018.1519787.
doi: 10.1080/09513590.2018.1519787 URL |
[22] |
Woodward EM, Troedsson MH. Inflammatory mechanisms of endometritis[J]. Equine Vet J, 2015, 47(4):384-389. doi: 10.1111/evj.12403.
doi: 10.1111/evj.12403 pmid: 25537084 |
[23] |
Kosei N, Zakharenko N, Herman D. Endometrial polyps in women of reproductive age: clinical and pathogene-tic variations[J]. Georgian Med News, 2017(273):16-22.
pmid: 29328024 |
[24] |
El-Hamarneh T, Hey-Cunningham AJ, Berbic M, et al. Cellular immune environment in endometrial polyps[J]. Fertil Steril, 2013, 100(5):1364-1372. doi: 10.1016/j.fertnstert.2013.06.050.
doi: 10.1016/j.fertnstert.2013.06.050 pmid: 23931965 |
[25] |
Zhu Y, Du M, Yi L, et al. CD4(+) T cell imbalance is associated with recurrent endometrial polyps[J]. Clin Exp Pharmacol Physiol, 2018, 45(6):507-513. doi: 10.1111/1440-1681.12913.
doi: 10.1111/1440-1681.12913 URL |
[26] |
Campisciano G, Zanotta N, Licastro D, et al. In vivo microbiome and associated immune markers: New insights into the pathogenesis of vaginal dysbiosis[J]. Sci Rep, 2018, 8(1):2307. doi: 10.1038/s41598-018-20649-x.
doi: 10.1038/s41598-018-20649-x pmid: 29396486 |
[27] |
Zhao G, Zhang T, Wu H, et al. MicroRNA let-7c Improves LPS-Induced Outcomes of Endometritis by Suppressing NF-κB Signaling[J]. Inflammation, 2019, 42(2):650-657. doi: 10.1007/s10753-018-0922-4.
doi: 10.1007/s10753-018-0922-4 pmid: 30406463 |
[28] |
Bozkurt M, Şahin L, Ulaş M. Hysteroscopic polypectomy decreases NF-κB1 expression in the mid-secretory endometrium of women with endometrial polyp[J]. Eur J Obstet Gynecol Reprod Biol, 2015, 189:96-100. doi: 10.1016/j.ejogrb.2015.03.032.
doi: 10.1016/j.ejogrb.2015.03.032 pmid: 25898371 |
[29] |
Zhu Y, Liu Z, Du M, et al. Macrophages in patients with recurrent endometrial polyps could exacerbate Th17 responses[J]. Clin Exp Pharmacol Physiol, 2018, 45(11):1128-1134. doi: 10.1111/1440-1681.12994.
doi: 10.1111/1440-1681.12994 URL |
[30] |
Baker JM, Al-Nakkash L, Herbst-Kralovetz MM. Estrogen-gut microbiome axis: Physiological and clinical implications[J]. Maturitas, 2017, 103:45-53. doi: 10.1016/j.maturitas.2017.06.025.
doi: 10.1016/j.maturitas.2017.06.025 URL |
[31] |
Chandra V, Kim JJ, Benbrook DM, et al. Therapeutic options for management of endometrial hyperplasia[J]. J Gynecol Oncol, 2016, 27(1):e8. doi: 10.3802/jgo.2016.27.e8.
doi: 10.3802/jgo.2016.27.e8 URL |
[32] |
Detti L, Peregrin-Alvarez I, Saed GM. Association between redundant endometrium and endometrial polyps: a pilot study[J]. Minerva Obstet Gynecol, 2021 Jul 20. doi: 10.23736/S2724-606X.21.04887-9.
doi: 10.23736/S2724-606X.21.04887-9 |
[33] |
Benner M, Ferwerda G, Joosten I, et al. How uterine microbiota might be responsible for a receptive, fertile endometrium[J]. Hum Reprod Update, 2018, 24(4):393-415. doi: 10.1093/humupd/dmy012.
doi: 10.1093/humupd/dmy012 URL |
[34] |
Teame T, Wang A, Xie M, et al. Paraprobiotics and Postbiotics of Probiotic Lactobacilli, Their Positive Effects on the Host and Action Mechanisms: A Review[J]. Front Nutr, 2020, 7:570344. doi: 10.3389/fnut.2020.570344.
doi: 10.3389/fnut.2020.570344 URL |
[35] |
Silpe JE, Balskus EP. Deciphering Human Microbiota-Host Chemical Interactions[J]. ACS Cent Sci, 2021, 7(1):20-29. doi: 10.1021/acscentsci.0c01030.
doi: 10.1021/acscentsci.0c01030 URL |
[1] | 苗贺瑱, 刘佳佳, 闫宇, 马国霞, 王晓慧. 一例罕见的宫颈子宫内膜异位症[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 475-478. |
[2] | 饶慧, 卢娇兰, 周欢, 李雄. 子宫内膜中肾样腺癌累及宫颈管间质一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 410-414. |
[3] | 吴春蕾, 赵晓丽, 邱韵桓, 王宝娟, 董融, 李凯茜, 夏天. 结合基因芯片与单细胞转录组鉴定反复种植失败患者子宫内膜的细胞间通讯[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 265-273. |
[4] | 吴宇轩, 孟子凡, 董丽, 季慧. 宫腔镜子宫内膜息肉手术后冻融胚胎移植时机对妊娠结局的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 274-278. |
[5] | 王晶, 王晓慧. 子宫内膜小细胞神经内分泌癌一例并文献复习[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 212-215. |
[6] | 姜乐然, 张园, 王琳, 刁飞扬. 人类子宫内膜的单细胞组学研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 216-221. |
[7] | 高朝阳, 章宁晴, 陈琼华, 吴荣锋. 环状RNA在子宫内膜异位症不孕患者卵泡颗粒细胞中的作用[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 243-248. |
[8] | 王芳, 万桃, 杨永秀. 2型糖尿病相关子宫内膜癌与肠道菌群相关性的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 249-253. |
[9] | 叶霖, 侯志金, 孟昱时. 西罗莫司在生殖领域的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 132-137. |
[10] | 楚漫微, 陈欢欢, 王倩, 王祎玟, 李丹, 杨淑珺, 张翠莲. miR-20a在妇科常见恶性肿瘤中的作用机制[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 172-176. |
[11] | 任缘, 孟昱时. 薄型子宫内膜的病理生理特征和治疗的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 58-62. |
[12] | 王洁, 马翔. 尿酸与女性生殖系统疾病及妊娠结局的相关性[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 63-67. |
[13] | 高亚婷, 王芳, 马建红, 马怡彤, 刘畅. 铜死亡在妇科恶性肿瘤中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 74-78. |
[14] | 冯雅茹, 李雪, 张慧英. 脂肪酸合酶及其抑制剂在子宫内膜癌中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 79-82. |
[15] | 何玲, 蒯丹, 张艳芳, 田文艳, 王颖梅, 张慧英. 免疫细胞和免疫因子在子宫内膜癌中的作用[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 83-88. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||