国际生殖健康/计划生育 ›› 2021, Vol. 40 ›› Issue (6): 495-498.doi: 10.12280/gjszjk.20210273
收稿日期:
2021-06-21
出版日期:
2021-11-15
发布日期:
2021-11-30
通讯作者:
张慧英
E-mail:huiying_zhang2020@126.com
基金资助:
YAO Li-jun, WANG Li-na, ZHANG Hui-ying()
Received:
2021-06-21
Published:
2021-11-15
Online:
2021-11-30
Contact:
ZHANG Hui-ying
E-mail:huiying_zhang2020@126.com
摘要:
围绝经期是妇女人体组成成分变化的重要时期,在该时期体质量及体脂率增加,而骨量及肌肉量下降,这些变化增加了多种疾病的发病风险。进行人体成分分析可以有效评估不同生理及病理情况下人体成分的组成,同时比较不同生活方式下人体组成成分的改变。就围绝经期妇女人体组成成分变化以及生活方式干预及激素替代治疗对这一时期身体成分影响的研究进行综述,建议围绝经期妇女优化饮食结构,进行持续和有规律的运动以防止体质量增加和腹部脂肪沉积,增加肌肉量,减慢骨量丢失,从而抵消绝经相关身体组成成分的不利变化。生活方式干预是应对围绝经期身体成分不利变化的主要方法,关于激素替代治疗的疗效和长期安全性还需要进一步的研究。
要丽君, 王立娜, 张慧英. 围绝经期妇女人体组成成分变化[J]. 国际生殖健康/计划生育, 2021, 40(6): 495-498.
YAO Li-jun, WANG Li-na, ZHANG Hui-ying. Changes of Human Body Composition in Perimenopausal Women: A Review[J]. Journal of International Reproductive Health/Family Planning, 2021, 40(6): 495-498.
[1] |
Takahashi TA, Johnson KM. Menopause[J]. Med Clin North Am, 2015, 99(3):521-534. doi: 10.1016/j.mcna.2015.01.006.
doi: 10.1016/j.mcna.2015.01.006 URL |
[2] |
Wang ZM, Pierson RN Jr, Heymsfield SB. The five-level model: a new approach to organizing body-composition research[J]. Am J Clin Nutr, 1992, 56(1):19-28. doi: 10.1093/ajcn/56.1.19.
doi: 10.1093/ajcn/56.1.19 pmid: 1609756 |
[3] |
Wong JCH, O′Neill S, Beck BR, et al. A 5-year longitudinal study of changes in body composition in women in the perimenopause and beyond[J]. Maturitas, 2020, 132:49-56. doi: 10.1016/j.maturitas.2019.12.001.
doi: 10.1016/j.maturitas.2019.12.001 URL |
[4] |
Yang TC, Gryka AA, Aucott LS, et al. Longitudinal study of weight, energy intake and physical activity change across two decades in older Scottish women[J]. J Epidemiol Community Health, 2017, 71(5):499-504. doi: 10.1136/jech-2016-20794.
doi: 10.1136/jech-2016-20794 URL |
[5] |
Greendale GA, Sternfeld B, Huang M, et al. Changes in body composition and weight during the menopause transition[J]. JCI Insight, 2019, 4(5):e124865. doi: 10.1172/jci.insight.124865.
doi: 10.1172/jci.insight.124865 URL |
[6] | Kohrt WM. Menopause medicine: exercise and weight gain[J]. Geriatrics, 2009, 64(6):28-29. |
[7] |
Ho SC, Wu S, Chan SG, et al. Menopausal transition and changes of body composition: a prospective study in Chinese perimenopausal women[J]. Int J Obes (Lond), 2010, 34(8):1265-1274. doi: 10.1038/ijo.2010.33.
doi: 10.1038/ijo.2010.33 URL |
[8] |
Milewicz A, Tworowska U, Demissie M. Menopausal obesity--myth or fact?[J]. Climacteric, 2001, 4(4):273-283. doi: 10.1080/713605137.
doi: 10.1080/713605137 pmid: 11770183 |
[9] |
El Khoudary SR, Aggarwal B, Beckie TM, et al. Menopause Transition and Cardiovascular Disease Risk: Implications for Timing of Early Prevention: A Scientific Statement From the American Heart Association[J]. Circulation, 2020, 142(25):e506-e532. doi: 10.1161/CIR.0000000000000912.
doi: 10.1161/CIR.0000000000000912 pmid: 33251828 |
[10] |
Rosito GA, Massaro JM, Hoffmann U, et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: the Framingham Heart Study[J]. Circulation, 2008, 117(5):605-613. doi: 10.1161/CIRCULATIONAHA.107.743062.
doi: 10.1161/CIRCULATIONAHA.107.743062 pmid: 18212276 |
[11] |
Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome[J]. Endocr Rev, 2000, 21(6):697-738. doi: 10.1210/edrv.21.6.0415.
doi: 10.1210/edrv.21.6.0415 pmid: 11133069 |
[12] |
Mauvais-Jarvis F, Clegg DJ, Hevener AL. The role of estrogens in control of energy balance and glucose homeostasis[J]. Endocr Rev, 2013, 34(3):309-338. doi: 10.1210/er.2012-1055.
doi: 10.1210/er.2012-1055 pmid: 23460719 |
[13] |
Van Pelt RE, Gavin KM, Kohrt WM. Regulation of Body Composition and Bioenergetics by Estrogens[J]. Endocrinol Metab Clin North Am, 2015, 44(3):663-676. doi: 10.1016/j.ecl.2015.05.011.
doi: 10.1016/j.ecl.2015.05.011 URL |
[14] |
Liu XM, Chan HC, Ding GL, et al. FSH regulates fat accumulation and redistribution in aging through the Gαi/Ca(2+)/CREB pathway[J]. Aging Cell, 2015, 14(3):409-420. doi: 10.1111/acel.12331.
doi: 10.1111/acel.12331 URL |
[15] |
Juppi HK, Sipilä S, Cronin NJ, et al. Role of Menopausal Transition and Physical Activity in Loss of Lean and Muscle Mass: A Follow-Up Study in Middle-Aged Finnish Women[J]. J Clin Med, 2020, 9(5):1588. doi: 10.3390/jcm9051588.
doi: 10.3390/jcm9051588 URL |
[16] |
Bougea A, Papadimas G, Papadopoulos C, et al. An Age-Related Morphometric Profile of Skeletal Muscle in Healthy Untrained Women[J]. J Clin Med, 2016, 5(11):97. doi: 10.3390/jcm5110097.
doi: 10.3390/jcm5110097 URL |
[17] |
Collins BC, Laakkonen EK, Lowe DA. Aging of the musculoskeletal system: How the loss of estrogen impacts muscle strength[J]. Bone, 2019, 123:137-144. doi: 10.1016/j.bone.2019.03.033.
doi: 10.1016/j.bone.2019.03.033 URL |
[18] |
Sipilä S, Finni T, Kovanen V. Estrogen influences on neuromuscular function in postmenopausal women[J]. Calcif Tissue Int, 2015, 96(3):222-233. doi: 10.1007/s00223-014-9924-x.
doi: 10.1007/s00223-014-9924-x URL |
[19] |
Collins BC, Arpke RW, Larson AA, et al. Estrogen Regulates the Satellite Cell Compartment in Females[J]. Cell Rep, 2019, 28(2):368-381.e6. doi: 10.1016/j.celrep.2019.06.025.
doi: 10.1016/j.celrep.2019.06.025 URL |
[20] |
Sowers MR, Clark MK, Hollis B, et al. Radial bone mineral density in pre- and perimenopausal women: a prospective study of rates and risk factors for loss[J]. J Bone Miner Res, 1992, 7(6):647-657. doi: 10.1002/jbmr.5650070609.
doi: 10.1002/jbmr.5650070609 pmid: 1414483 |
[21] |
Sowers MR, Greendale GA, Bondarenko I, et al. Endogenous hormones and bone turnover markers in pre- and perimenopausal women: SWAN[J]. Osteoporos Int, 2003, 14(3):191-197. doi: 10.1007/s00198-002-1329-4.
doi: 10.1007/s00198-002-1329-4 pmid: 12730778 |
[22] |
Greendale GA, Sowers M, Han W, et al. Bone mineral density loss in relation to the final menstrual period in a multiethnic cohort: results from the Study of Women′s Health Across the Nation (SWAN)[J]. J Bone Miner Res, 2012, 27(1):111-118. doi: 10.1002/jbmr.534.
doi: 10.1002/jbmr.534 pmid: 21976317 |
[23] |
Greendale GA, Huang M, Cauley JA, et al. Trabecular Bone Score Declines During the Menopause Transition: The Study of Women′s Health Across the Nation (SWAN)[J]. J Clin Endocrinol Metab, 2020, 105(4):e1872-e1882. doi: 10.1210/clinem/dgz056.
doi: 10.1210/clinem/dgz056 URL |
[24] |
Wolski H, Drews K, Bogacz A, et al. The RANKL/RANK/OPG signal trail: significance of genetic polymorphisms in the etiology of postmenopausal osteoporosis[J]. Ginekol Pol, 2016, 87(5):347-352. doi: 10.5603/GP.2016.0014.
doi: 10.5603/GP.2016.0014 URL |
[25] |
Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects[J]. J Clin Invest, 2005, 115(12):3318-3325. doi: 10.1172/JCI27071.
doi: 10.1172/JCI27071 URL |
[26] |
Lizneva D, Yuen T, Sun L, et al. Emerging concepts in the epidemiology, pathophysiology, and clinical care of osteoporosis across the menopausal transition[J]. Matrix Biol, 2018, 71/72:70-81. doi: 10.1016/j.matbio.2018.05.001.
doi: 10.1016/j.matbio.2018.05.001 URL |
[27] |
Flor-Alemany M, Marín-Jiménez N, Nestares T, et al. Mediterranean diet, tobacco consumption and body composition during perimenopause. The FLAMENCO project[J]. Maturitas, 2020, 137:30-36. doi: 10.1016/j.maturitas.2020.04.002.
doi: S0378-5122(20)30232-2 pmid: 32498934 |
[28] |
Bailey RL, Zou P, Wallace TC, et al. Calcium Supplement Use Is Associated With Less Bone Mineral Density Loss, But Does Not Lessen the Risk of Bone Fracture Across the Menopause Transition: Data From the Study of Women′s Health Across the Nation[J]. JBMR Plus, 2020, 4(1):e10246. doi: 10.1002/jbm4.10246.
doi: 10.1002/jbm4.10246 |
[29] |
Gao HL, Gao HX, Sun FM, et al. Effects of walking on body composition in perimenopausal and postmenopausal women: a systematic review and meta-analysis[J]. Menopause, 2016, 23(8):928-934. doi: 10.1097/GME.0000000000000627.
doi: 10.1097/GME.0000000000000627 |
[30] |
Sipilä S, Törmäkangas T, Sillanpää E, et al. Muscle and bone mass in middle-aged women: role of menopausal status and physical activity[J]. J Cachexia Sarcopenia Muscle, 2020, 11(3):698-709. doi: 10.1002/jcsm.12547.
doi: 10.1002/jcsm.12547 URL |
[31] |
Costa G, Carneiro G, Umeda L, et al. Influence of Menopausal Hormone Therapy on Body Composition and Metabolic Parameters[J]. Biores Open Access, 2020, 9(1):80-85. doi: 10.1089/biores.2019.0050.
doi: 10.1089/biores.2019.0050 URL |
[1] | 宗嬿, 陈宜爽, 徐莲薇. 围绝经期睡眠障碍的发病机制[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 166-171. |
[2] | 田文艳, 罗营, 李小燕, 颜琪, 薛凤霞, 王颖梅, 张慧英. 45,X/47,XYY性发育异常一例并文献复习[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 11-16. |
[3] | 左圣兰, 温玉娟, 徐小芳, 金龙妹, 顾晓青, 王瑛, 王柏松, 许泓, 周蒨. 围绝经期和绝经后女性对绝经相关的性功能障碍的认知情况调查[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 441-445. |
[4] | 张哲, 张崴. 绝经激素治疗与妇科恶性肿瘤风险[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 519-523. |
[5] | 段霞, 王治鸿. 促性腺激素释放激素激动剂降调节激素替代治疗周期在冻融胚胎移植中的研究进展[J]. 国际生殖健康/计划生育, 2022, 41(5): 419-424. |
[6] | 程铭, 贾婵维, 刘英. 早发性卵巢功能不全的临床诊疗进展[J]. 国际生殖健康/计划生育, 2021, 40(2): 137-141. |
[7] | 邢雅纯, 苏雁, 赵纯, 李欣, 凌秀凤. 降调节激素替代方案中雌激素启动时机对冻融胚胎移植妊娠结局的影响[J]. 国际生殖健康/计划生育, 2021, 40(2): 89-92. |
[8] | 陶虹江,陈捷,陈小燕. 完全型雄激素不敏感综合征2例临床特点及处理[J]. 国际生殖健康/计划生育, 2020, 39(2): 141-143. |
[9] | 许虹,康小玲,徐丽清,朱秀兰,张曦倩. 2种内膜准备方案对反复种植失败患者子宫内膜孕激素受体和整合素αⅤβ3表达的影响[J]. 国际生殖健康/计划生育, 2020, 39(1): 12-14. |
[10] | 李欣,凌秀凤,赵纯,陈梦茜,季晓媛,季慧,苏雁. 枸橼酸西地那非对宫腔粘连术后冻融胚胎移植妊娠结局的影响[J]. 国际生殖健康/计划生育, 2018, 37(4): 277-280. |
[11] | 苏婷,赵元辰,宋殿荣. 外阴阴道萎缩相关的围绝经期及绝经后女性性功能障碍[J]. 国际生殖健康/计划生育, 2017, 36(6): 514-518. |
[12] | 吴洪波;李柳铭;李慕军;罗江霞. GnRHa在冻融周期胚胎反复种植失败患者中的应用[J]. 国际生殖健康/计划生育, 2016, 35(4): 269-272. |
[13] | 朱素芳;马玉珍. 两种内膜准备方案冻融胚胎移植妊娠结局的回顾性分析[J]. 国际生殖健康/计划生育, 2015, 34(6): 507-509. |
[14] | 崔莉莉;王冬娜;毛佩贤;任艳萍;汤宜朗. 围绝经期抑郁症的治疗进展[J]. 国际生殖健康/计划生育, 2015, 34(4): 349-352. |
[15] | 陈瑛;赵焕英;任新瑜. 雌激素及其受体调节剂对去势APOE基因敲除小鼠胸主动脉中NF-κB和MMP-9的影响[J]. 国际生殖健康/计划生育, 2015, 34(3): 193-195. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||