国际生殖健康/计划生育 ›› 2021, Vol. 40 ›› Issue (6): 490-494.doi: 10.12280/gjszjk.20210162
收稿日期:
2021-04-12
出版日期:
2021-11-15
发布日期:
2021-11-30
通讯作者:
马天仲
E-mail:tiann8283@163.com
基金资助:
ZHENG Xiu-dan, YIN Lan-lan, WANG Yan-bo, MA Tian-zhong()
Received:
2021-04-12
Published:
2021-11-15
Online:
2021-11-30
Contact:
MA Tian-zhong
E-mail:tiann8283@163.com
摘要:
薄型子宫内膜可导致临床妊娠率和活产率降低,目前尚无改善薄型子宫内膜患者子宫内膜厚度的最佳方案。富血小板血浆(platelet-rich plasma,PRP)灌注治疗作为改善子宫内膜厚度的一种新型的治疗方法,在治疗薄型子宫内膜的确切作用较为复杂。PRP所含有的血小板浓度高于全血中通常所含的血小板浓度,而使用高浓度血小板的基本原理和治疗潜力是基于它们可以提供超生理剂量的必需生长因子,以提供再生刺激,促进具有低愈合潜力的组织修复。现基于目前国内外PRP治疗薄型子宫内膜的研究进展,探讨PRP内生长因子促细胞增殖、迁移及通过核因子κB(nuclear factor-κB,NF-κB)信号通路调节子宫内膜细胞增殖和凋亡的作用,为进一步研究PRP治疗的分子基础及确切的作用机制提供参考。
郑秀丹, 尹兰兰, 王艳波, 马天仲. 富血小板血浆治疗薄型子宫内膜的作用机制[J]. 国际生殖健康/计划生育, 2021, 40(6): 490-494.
ZHENG Xiu-dan, YIN Lan-lan, WANG Yan-bo, MA Tian-zhong. The Mechanism of Platelet-Rich Plasma Therapy in Thin Endometrium[J]. Journal of International Reproductive Health/Family Planning, 2021, 40(6): 490-494.
[1] |
Lv H, Li X, Du J, et al. Effect of endometrial thickness and embryo quality on live-birth rate of fresh IVF/ICSI cycles: a retrospective cohort study[J]. Reprod Biol Endocrinol, 2020, 18(1):89. doi: 10.1186/s12958-020-00636-6.
doi: 10.1186/s12958-020-00636-6 URL |
[2] |
Liu KE, Hartman M, Hartman A. Management of thin endometrium in assisted reproduction: a clinical practice guideline from the Canadian Fertility and Andrology Society[J]. Reprod Biomed Online, 2019, 39(1):49-62. doi: 10.1016/j.rbmo.2019.02.013.
doi: 10.1016/j.rbmo.2019.02.013 URL |
[3] |
Guo Z, Xu X, Zhang L, et al. Endometrial thickness is associated with incidence of small-for-gestational-age infants in fresh in vitro fertilization-intracytoplasmic sperm injection and embryo transfer cycles[J]. Fertil Steril, 2020, 113(4):745-752. doi: 10.1016/j.fertnstert.2019.12.014.
doi: 10.1016/j.fertnstert.2019.12.014 URL |
[4] |
Liu KE, Hartman M, Hartman A, et al. The impact of a thin endometrial lining on fresh and frozen-thaw IVF outcomes: an analysis of over 40 000 embryo transfers[J]. Hum Reprod, 2018, 33(10):1883-1888. doi: 10.1093/humrep/dey281.
doi: 10.1093/humrep/dey281 URL |
[5] |
赵静, 黄国宁, 孙海翔, 等. 辅助生殖技术中异常子宫内膜诊疗的中国专家共识[J]. 生殖医学杂志, 2018, 27(11):1057-1064. doi: 10.3969/j.issn.1004-3845.2018.11.003.
doi: 10.3969/j.issn.1004-3845.2018.11.003 |
[6] |
Kasius A, Smit JG, Torrance HL, et al. Endometrial thickness and pregnancy rates after IVF: a systematic review and meta-analysis[J]. Hum Reprod Update, 2014, 20(4):530-541. doi: 10.1093/humupd/dmu011.
doi: 10.1093/humupd/dmu011 URL |
[7] |
刘奕彤, 周抒. 薄型子宫内膜的治疗进展[J]. 国际生殖健康/计划生育杂志, 2021, 40(2):157-162. doi: 10.12280/gjszjk.20200274.
doi: 10.12280/gjszjk.20200274 |
[8] |
Du J, Lu H, Yu X, et al. Efficacy and safety of platelet-rich plasma for the treatment of thin endometrium: A protocol for systematic review and meta-analysis[J]. Medicine (Baltimore), 2020, 99(3):e18848. doi: 10.1097/MD.0000000000018848.
doi: 10.1097/MD.0000000000018848 URL |
[9] |
Maleki-Hajiagha A, Razavi M, Rouholamin S, et al. Intrauterine infusion of autologous platelet-rich plasma in women undergoing assisted reproduction: A systematic review and meta-analysis[J]. J Reprod Immunol, 2020, 137:103078. doi: 10.1016/j.jri.2019.103078.
doi: S0165-0378(19)30440-1 pmid: 32006776 |
[10] |
Peng Y, Huang S, Wu Y, et al. Platelet rich plasma clot releasate preconditioning induced PI3K/AKT/NFκB signaling enhances survival and regenerative function of rat bone marrow mesenchymal stem cells in hostile microenvironments[J]. Stem Cells Dev, 2013, 22(24):3236-3251. doi: 10.1089/scd.2013.0064.
doi: 10.1089/scd.2013.0064 pmid: 23885779 |
[11] |
Dawood AS, Salem HA. Current clinical applications of platelet-rich plasma in various gynecological disorders: An appraisal of theory and practice[J]. Clin Exp Reprod Med, 2018, 45(2):67-74. doi: 10.5653/cerm.2018.45.2.67.
doi: 10.5653/cerm.2018.45.2.67 URL |
[12] |
Denapoli PM, Stilhano RS, Ingham SJ, et al. Platelet-Rich Plasma in a Murine Model: Leukocytes, Growth Factors, Flt-1, and Muscle Healing[J]. Am J Sports Med, 2016, 44(8):1962-1971. doi: 10.1177/0363546516646100.
doi: 10.1177/0363546516646100 URL |
[13] |
Wang X, Wang C, Cong J, et al. Regenerative Potential of Menstrual Blood-Derived Stem Cells and Platelet-Derived Growth Factor in Endometrial Injury[J]. Med Sci Monit, 2020, 26:e919251. doi: 10.12659/MSM.919251.
doi: 10.12659/MSM.919251 |
[14] |
Islam MR, Yamagami K, Yoshii Y, et al. Growth factor induced proliferation, migration, and lumen formation of rat endometrial epithelial cells in vitro[J]. J Reprod Dev, 2016, 62(3):271-278. doi: 10.1262/jrd.2015-158.
doi: 10.1262/jrd.2015-158 URL |
[15] |
El-Sharkawy H, Kantarci A, Deady J, et al. Platelet-rich plasma: growth factors and pro- and anti-inflammatory properties[J]. J Periodontol, 2007, 78(4):661-669. doi: 10.1902/jop.2007.060302.
doi: 10.1902/jop.2007.060302 pmid: 17397313 |
[16] |
Yi KW, Mamillapalli R, Sahin C, et al. Bone marrow-derived cells or C-X-C motif chemokine 12 (CXCL12) treatment improve thin endometrium in a mouse model[J]. Biol Reprod, 2019, 100(1):61-70. doi: 10.1093/biolre/ioy175.
doi: 10.1093/biolre/ioy175 URL |
[17] |
Gargett CE, Schwab KE, Deane JA. Endometrial stem/progenitor cells: the first 10 years[J]. Hum Reprod Update, 2016, 22(2):137-163. doi: 10.1093/humupd/dmv051.
doi: 10.1093/humupd/dmv051 |
[18] |
Kaitu′u-Lino TJ, Ye L, Salamonsen LA, et al. Identification of label-retaining perivascular cells in a mouse model of endometrial decidualization, breakdown, and repair[J]. Biol Reprod, 2012, 86(6):184. doi: 10.1095/biolreprod.112.099309.
doi: 10.1095/biolreprod.112.099309 |
[19] |
Santamaria X, Mas A, Cervelló I, et al. Uterine stem cells: from basic research to advanced cell therapies[J]. Hum Reprod Update, 2018, 24(6):673-693. doi: 10.1093/humupd/dmy028.
doi: 10.1093/humupd/dmy028 pmid: 30239705 |
[20] |
Wang X, Liu L, Mou S, et al. Investigation of platelet-rich plasma in increasing proliferation and migration of endometrial mesenchymal stem cells and improving pregnancy outcome of patients with thin endometrium[J]. J Cell Biochem,2018 Dec 3. Epub ahead of print. doi: 10.1002/jcb.28014.
doi: 10.1002/jcb.28014 |
[21] |
Zhang S, Li P, Yuan Z, et al. Platelet-rich plasma improves therapeutic effects of menstrual blood-derived stromal cells in rat model of intrauterine adhesion[J]. Stem Cell Res Ther, 2019, 10(1):61. doi: 10.1186/s13287-019-1155-7.
doi: 10.1186/s13287-019-1155-7 URL |
[22] |
Pei D, Shu X, Gassama-Diagne A, et al. Mesenchymal-epithelial transition in development and reprogramming[J]. Nat Cell Biol, 2019, 21(1):44-53. doi: 10.1038/s41556-018-0195-z.
doi: 10.1038/s41556-018-0195-z URL |
[23] |
Huang CC, Orvis GD, Wang Y, et al. Stromal-to-epithelial transition during postpartum endometrial regeneration[J]. PLoS One, 2012, 7(8):e44285. doi: 10.1371/journal.pone.0044285.
doi: 10.1371/journal.pone.0044285 URL |
[24] |
Cousins FL, Murray A, Esnal A, et al. Evidence from a mouse model that epithelial cell migration and mesenchymal-epithelial transition contribute to rapid restoration of uterine tissue integrity during menstruation[J]. PLoS One, 2014, 9(1):e86378. doi: 10.1371/journal.pone.0086378.
doi: 10.1371/journal.pone.0086378 URL |
[25] |
Agarwal M, Mettler L, Jain S, et al. Management of a Thin Endometrium by Hysteroscopic Instillation of Platelet-Rich Plasma Into The Endomyometrial Junction: A Pilot Study[J]. J Clin Med, 2020, 9(9):2795. doi: 10.3390/jcm9092795.
doi: 10.3390/jcm9092795 URL |
[26] |
Aghajanova L, Houshdaran S, Balayan S, et al. In vitro evidence that platelet-rich plasma stimulates cellular processes involved in endometrial regeneration[J]. J Assist Reprod Genet, 2018, 35(5):757-770. doi: 10.1007/s10815-018-1130-8.
doi: 10.1007/s10815-018-1130-8 URL |
[27] |
González-Ramos R, Van Langendonckt A, Defrère S, et al. Involvement of the nuclear factor-κB pathway in the pathogenesis of endometriosis[J]. Fertil Steril, 2010, 94(6):1985-1994. doi: 10.1016/j.fertnstert.2010.01.013.
doi: 10.1016/j.fertnstert.2010.01.013 pmid: 20188363 |
[28] |
González-Ramos R, Rocco J, Rojas C, et al. Physiologic activation of nuclear factor kappa-B in the endometrium during the menstrual cycle is altered in endometriosis patients[J]. Fertil Steril, 2012, 97(3):645-651. doi: 10.1016/j.fertnstert.2011.12.006.
doi: 10.1016/j.fertnstert.2011.12.006 pmid: 22196717 |
[29] |
González-Ramos R, Defrère S, Devoto L. Nuclear factor-kappaB: a main regulator of inflammation and cell survival in endometriosis pathophysiology[J]. Fertil Steril, 2012, 98(3):520-528. doi: 10.1016/j.fertnstert.2012.06.021.
doi: 10.1016/j.fertnstert.2012.06.021 pmid: 22771029 |
[30] |
Chowdhury I, Banerjee S, Driss A, et al. Curcumin attenuates proangiogenic and proinflammatory factors in human eutopic endometrial stromal cells through the NF-κB signaling pathway[J]. J Cell Physiol, 2019, 234(5):6298-6312. doi: 10.1002/jcp.27360.
doi: 10.1002/jcp.27360 pmid: 30259980 |
[31] |
Zhou Y, Shen H, Wu Y, et al. Platelet-Rich Plasma Therapy Enhances the Beneficial Effect of Bone Marrow Stem Cell Transplant on Endometrial Regeneration[J]. Front Cell Dev Biol, 2020, 8:52. doi: 10.3389/fcell.2020.00052.
doi: 10.3389/fcell.2020.00052 URL |
[32] | Chang Y, Li J, Chen Y, et al. Autologous platelet-rich plasma promotes endometrial growth and improves pregnancy outcome during in vitro fertilization[J]. Int J Clin Exp Med, 2015, 8(1):1286-1290. |
[33] |
Kim H, Shin JE, Koo HS, et al. Effect of Autologous Platelet-Rich Plasma Treatment on Refractory Thin Endometrium During the Frozen Embryo Transfer Cycle: A Pilot Study[J]. Front Endocrinol (Lausanne), 2019, 10:61. doi: 10.3389/fendo.2019.00061.
doi: 10.3389/fendo.2019.00061 URL |
[34] |
de Miguel-Gómez L, López-Martínez S, Campo H, et al. Comparison of different sources of platelet-rich plasma as treatment option for infertility-causing endometrial pathologies[J]. Fertil Steril, 2021, 115(2):490-500. doi: 10.1016/j.fertnstert.2020.07.053.
doi: 10.1016/j.fertnstert.2020.07.053 URL |
[35] |
Tehraninejad ES, Kashani NG, Hosseini A, et al. Autologous platelet-rich plasma infusion does not improve pregnancy outcomes in frozen embryo transfer cycles in women with history of repeated implantation failure without thin endometrium[J]. J Obstet Gynaecol Res, 2021, 47(1):147-151. doi: 10.1111/jog.14445.
doi: 10.1111/jog.14445 URL |
[1] | 任缘, 孟昱时. 薄型子宫内膜的病理生理特征和治疗的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 58-62. |
[2] | 张宇杰, 王文成, 张宁. GDF-9和BMP-15在PCOS卵泡发育及胰岛素抵抗中的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 487-491. |
[3] | 姚欣怡, 俞凌. 宫腔粘连治疗的新进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 431-436. |
[4] | 柳絮, 杨爱军, 李泽武, 石城, 刘利君, 孔潇丽, 王靖雯. 富血小板血浆改善卵巢储备功能的相关机制[J]. 国际生殖健康/计划生育杂志, 2023, 42(4): 329-333. |
[5] | 李光璨, 翟超, 张晓轩, 任春娥. 转化生长因子β1在宫腔粘连中的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(1): 83-88. |
[6] | 朱霞, 李慧珍, 刘丹, 马天仲. 胚胎植入的相关信号通路[J]. 国际生殖健康/计划生育, 2022, 41(5): 409-413. |
[7] | 邱丹儿, 张琬琳, 王晓红. 宫腔粘连分离术后预防复发和改善生殖结局的辅助治疗措施[J]. 国际生殖健康/计划生育, 2022, 41(1): 46-51. |
[8] | 冯玉婷, 罗姝红, 李兰, 苏琴, 程惊秋, 叶红霞. miR-146a-5p在不明原因复发性流产蜕膜组织中的表达及其意义[J]. 国际生殖健康/计划生育, 2021, 40(4): 286-293. |
[9] | 王丽燕, 符晓倩, 李华, 杨一华. 难治性薄型子宫内膜的发病因素及处理策略[J]. 国际生殖健康/计划生育, 2021, 40(4): 314-318. |
[10] | 刘奕彤, 周抒. 薄型子宫内膜的治疗进展[J]. 国际生殖健康/计划生育, 2021, 40(2): 157-162. |
[11] | 尹兰兰, 汪晨曦, 马天仲. 体外激活治疗早发性卵巢功能不全的作用机制及进展[J]. 国际生殖健康/计划生育, 2020, 39(4): 319-323. |
[12] | 俞田田,洪丽华. 早期妊娠丢失蜕膜组织中与血管重塑相关的miRNAs表达谱分析 [J]. 国际生殖健康/计划生育, 2019, 38(1): 43-47. |
[13] | 周一鸣 汤小晗 卢美松. 肝素结合性表皮生长因子在生殖医学的研究进展[J]. 国际生殖健康/计划生育, 2017, 36(2): 156-159. |
[14] | 何婧妍;方兰兰;孙莹璞. 转化生长因子β超家族在多囊卵巢综合征中的表达和作用特点[J]. 国际生殖健康/计划生育, 2016, 35(5): 423-428. |
[15] | 余璐萍;刘英. 干细胞治疗薄型子宫内膜的研究进展[J]. 国际生殖健康/计划生育, 2016, 35(4): 331-334. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||