国际生殖健康/计划生育 ›› 2022, Vol. 41 ›› Issue (2): 172-176.doi: 10.12280/gjszjk.20210613
• 综述 • 上一篇
收稿日期:
2021-12-22
出版日期:
2022-03-15
发布日期:
2022-03-29
通讯作者:
王志莲
E-mail:ZL2009wang@163.com
基金资助:
Received:
2021-12-22
Published:
2022-03-15
Online:
2022-03-29
Contact:
WANG Zhi-lian
E-mail:ZL2009wang@163.com
摘要:
几乎90%以上的宫颈癌都有高危人乳头瘤病毒(high risk human papilloma virus,HR-HPV)的持续感染,尤其当患者感染HPV16时,高级别宫颈上皮内瘤变或宫颈癌的发生风险可进一步上升。研究表明人类肿瘤中存在低氧现象,缺氧诱导因子1α(hypoxia-inducible factor-1α,HIF-1α)与低氧微环境关系最为密切,HIF-1α的活化能促进肿瘤生长,已成为目前的研究热点。经典的磷脂酰肌醇3激酶(phosphoinositide 3-kinase,PI3K)/蛋白激酶B(protein kinase B,Akt)自噬通路抑制自噬,并且在多种人类肿瘤中表达失调,其异常活化使细胞异常增殖、分化,促进肿瘤生长。综述HPV16感染可能引起HIF-1α与PI3K/Akt自噬通路变化的不同机制,探讨HPV16相关宫颈癌中PI3K/Akt自噬通路及HIF-1α的表达意义。
吴桐桐, 王志莲. HPV16相关宫颈癌中PI3K/Akt自噬通路与HIF-1α的关系[J]. 国际生殖健康/计划生育, 2022, 41(2): 172-176.
WU Tong-tong, WANG Zhi-lian. The Relationship between PI3K/Akt Autophagy Pathway and HIF-1α in HPV16 Related Cervical Cancer[J]. Journal of International Reproductive Health/Family Planning, 2022, 41(2): 172-176.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. doi: 10.3322/caac.21660.
doi: 10.3322/caac.21660 URL |
[2] |
Zhang M, Song Y, Yu L. LncRNA PTCSC3 suppressed cervical carcinoma cell invasion and proliferation via regulating miR-574-5p[J]. Am J Transl Res, 2019, 11(11):7186-7194.
pmid: 31814920 |
[3] |
Kim HJ, Cho HS, Ban HS, et al. Suppression of HIF-1α accumulation by betulinic acid through proteasome activation in hypoxic cervical cancer[J]. Biochem Biophys Res Commun, 2020, 523(3):726-732. doi: 10.1016/j.bbrc.2020.01.031.
doi: 10.1016/j.bbrc.2020.01.031 URL |
[4] |
Bossler F, Hoppe-Seyler K, Hoppe-Seyler F. PI3K/AKT/mTOR Signaling Regulates the Virus/Host Cell Crosstalk in HPV-Positive Cervical Cancer Cells[J]. Int J Mol Sci, 2019, 20(9):2188. doi: 10.3390/ijms20092188.
doi: 10.3390/ijms20092188 URL |
[5] |
Yun CW, Lee SH. The Roles of Autophagy in Cancer[J]. Int J Mol Sci, 2018, 19(11):3466. doi: 10.3390/ijms19113466.
doi: 10.3390/ijms19113466 URL |
[6] |
Infantino V, Santarsiero A, Convertini P, et al. Cancer Cell Metabolism in Hypoxia: Role of HIF-1 as Key Regulator and Therapeutic Target[J]. Int J Mol Sci, 2021, 22(11):5703. doi: 10.3390/ijms22115703.
doi: 10.3390/ijms22115703 URL |
[7] |
Silva N, Sabino AP, Tafuri A, et al. Lack of association between methylenetetrahydrofolate reductase C677T polymorphism, HPV infection and cervical intraepithelial neoplasia in Brazilian women[J]. BMC Med Genet, 2019, 20(1):100. doi: 10.1186/s12881-019-0831-x.
doi: 10.1186/s12881-019-0831-x URL |
[8] |
Molijn A, Jenkins D, Chen W, et al. The complex relationship between human papillomavirus and cervical adenocarcinoma[J]. Int J Cancer, 2016, 138(2):409-416. doi: 10.1002/ijc.29722.
doi: 10.1002/ijc.29722 pmid: 26334557 |
[9] |
Zacapala-Gómez AE, Del Moral-Hernández O, Villegas-Sepúlveda N, et al. Changes in global gene expression profiles induced by HPV 16 E6 oncoprotein variants in cervical carcinoma C33-A cells[J]. Virology, 2016, 488:187-195. doi: 10.1016/j.virol.2015.11.017.
doi: 10.1016/j.virol.2015.11.017 pmid: 26655236 |
[10] | Li X, Gong Z, Zhang L, et al. Autophagy knocked down by high-risk HPV infection and uterine cervical carcinogenesis[J]. Int J Clin Exp Med, 2015, 8(7):10304-10314. |
[11] |
Arizmendi-Izazaga A, Navarro-Tito N, Jiménez-Wences H, et al. Metabolic Reprogramming in Cancer: Role of HPV 16 Variants[J]. Pathogens, 2021, 10(3):347. doi: 10.3390/pathogens10030347.
doi: 10.3390/pathogens10030347 URL |
[12] |
Jiang L, Shi S, Shi Q, et al. Similarity in the functions of HIF-1α and HIF-2α proteins in cervical cancer cells[J]. Oncol Lett, 2017, 14(5):5643-5651. doi: 10.3892/ol.2017.6837.
doi: 10.3892/ol.2017.6837 |
[13] |
Xu S, Catapang A, Braas D, et al. A precision therapeutic strategy for hexokinase 1-null, hexokinase 2-positive cancers[J]. Cancer Metab, 2018, 6:7. doi: 10.1186/s40170-018-0181-8.
doi: 10.1186/s40170-018-0181-8 URL |
[14] |
Tang X, Zhang Q, Nishitani J, et al. Overexpression of human papillomavirus type 16 oncoproteins enhances hypoxia-inducible factor 1 alpha protein accumulation and vascular endothelial growth factor expression in human cervical carcinoma cells[J]. Clin Cancer Res, 2007, 13(9):2568-2576. doi: 10.1158/1078-0432.CCR-06-2704.
doi: 10.1158/1078-0432.CCR-06-2704 URL |
[15] |
Xu X, Liu T, Wu J, et al. Transferrin receptor-involved HIF-1 signaling pathway in cervical cancer[J]. Cancer Gene Ther, 2019, 26(11/12):356-365. doi: 10.1038/s41417-019-0078-x.
doi: 10.1038/s41417-019-0078-x URL |
[16] |
Wang F, Tan WH, Liu W, et al. Effects of miR-214 on cervical cancer cell proliferation, apoptosis and invasion via modulating PI3K/AKT/mTOR signal pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22(7):1891-1898. doi: 10.26355/eurrev_201804_14711.
doi: 10.26355/eurrev_201804_14711 |
[17] |
Hao Y, Huang J, Ma Y, et al. Asiatic acid inhibits proliferation, migration and induces apoptosis by regulating Pdcd4 via the PI3K/Akt/mTOR/p70S6K signaling pathway in human colon carcinoma cells[J]. Oncol Lett, 2018, 15(6):8223-8230. doi: 10.3892/ol.2018.8417.
doi: 10.3892/ol.2018.8417 |
[18] | Zhang W, Zhou Q, Wei Y, et al. The exosome-mediated PI3k/Akt/mTOR signaling pathway in cervical cancer[J]. Int J Clin Exp Pathol, 2019, 12(7):2474-2484. |
[19] |
Rahmani F, Ferns GA, Talebian S, et al. Role of regulatory miRNAs of the PI3K/AKT signaling pathway in the pathogenesis of breast cancer[J]. Gene, 2020, 737:144459. doi: 10.1016/j.gene.2020.144459.
doi: S0378-1119(20)30128-1 pmid: 32045660 |
[20] |
方瑾, 罗泳仪, 易佰蓉. 宫颈上皮内瘤变临床特点及预后情况分析[J]. 河北医药, 2017, 39(8):1137-1140. doi: 10.3969/j.issn.1002-7386.2017.08.004.
doi: 10.3969/j.issn.1002-7386.2017.08.004 |
[21] |
Cuninghame S, Jackson R, Lees SJ, et al. Two common variants of human papillomavirus type 16 E6 differentially deregulate sugar metabolism and hypoxia signalling in permissive human keratinocytes[J]. J Gen Virol, 2017, 98(9):2310-2319. doi: 10.1099/jgv.0.000905.
doi: 10.1099/jgv.0.000905 pmid: 28857035 |
[22] |
Cuninghame S, Jackson R, Lees SJ, et al. Two common variants of human papillomavirus type 16 E6 differentially deregulate sugar metabolism and hypoxia signalling in permissive human keratinocytes[J]. J Gen Virol, 2017, 98(9):2310-2319. doi: 10.1099/jgv.0.000905.
doi: 10.1099/jgv.0.000905 pmid: 28857035 |
[23] |
Guo Y, Meng X, Ma J, et al. Human papillomavirus 16 E6 contributes HIF-1α induced Warburg effect by attenuating the VHL-HIF-1α interaction[J]. Int J Mol Sci, 2014, 15(5):7974-7986. doi: 10.3390/ijms15057974.
doi: 10.3390/ijms15057974 pmid: 24810689 |
[24] |
Gu NJ, Wu MZ, He L, et al. HPV 16 E6/E7 up-regulate the expression of both HIF-1α and GLUT1 by inhibition of RRAD and activation of NF-κB in lung cancer cells[J]. J Cancer, 2019, 10(27):6903-6909. doi: 10.7150/jca.37070.
doi: 10.7150/jca.37070 URL |
[25] |
Reyes A, Corrales N, Gálvez N, et al. Contribution of hypoxia inducible factor-1 during viral infections[J]. Virulence, 2020, 11(1):1482-1500. doi: 10.1080/21505594.2020.1836904.
doi: 10.1080/21505594.2020.1836904 URL |
[26] |
Mattoscio D, Medda A, Chiocca S. Human Papilloma Virus and Autophagy[J]. Int J Mol Sci, 2018, 19(6):1775. doi: 10.3390/ijms19061775.
doi: 10.3390/ijms19061775 URL |
[27] |
Poillet-Perez L, White E. Role of tumor and host autophagy in cancer metabolism[J]. Genes Dev, 2019, 33(11/12):610-619. doi: 10.1101/gad.325514.119.
doi: 10.1101/gad.325514.119 URL |
[28] |
Li Z, Liu J, Que L, et al. The immunoregulatory protein B7-H3 promotes aerobic glycolysis in oral squamous carcinoma via PI3K/Akt/mTOR pathway[J]. J Cancer, 2019, 10(23):5770-5784. doi: 10.7150/jca.29838.
doi: 10.7150/jca.29838 URL |
[29] |
Gao T, Zhang X, Zhao J, et al. SIK2 promotes reprogramming of glucose metabolism through PI3K/AKT/HIF-1α pathway and Drp1-mediated mitochondrial fission in ovarian cancer[J]. Cancer Lett, 2020, 469:89-101. doi: 10.1016/j.canlet.2019.10.029.
doi: 10.1016/j.canlet.2019.10.029 URL |
[30] |
Coppock JD, Lee JH. mTOR, metabolism, and the immune response in HPV-positive head and neck squamous cell cancer[J]. World J Otorhinolaryngol Head Neck Surg, 2016, 2(2):76-83. doi: 10.1016/j.wjorl.2016.05.010.
doi: 10.1016/j.wjorl.2016.05.010 URL |
[31] |
Zhang W, Xiong Z, Wei T, et al. Nuclear factor 90 promotes angiogenesis by regulating HIF-1α/VEGF-A expression through the PI3K/Akt signaling pathway in human cervical cancer[J]. Cell Death Dis, 2018, 9(3):276. doi: 10.1038/s41419-018-0334-2.
doi: 10.1038/s41419-018-0334-2 URL |
[32] | Ma D, Li Y, Xiao W, et al. Achyranthes bidentata extract protects chondrocytes functions through suppressing glycolysis and apoptosis via MAPK/AKT signaling axis[J]. Am J Transl Res, 2020, 12(1):142-152. |
[33] |
Dayer G, Masoom ML, Togtema M, et al. Virus-Host Protein-Protein Interactions between Human Papillomavirus 16 E6 A1 and D2/D3 Sub-Lineages: Variances and Similarities[J]. Int J Mol Sci, 2020, 21(21):7980. doi: 10.3390/ijms21217980.
doi: 10.3390/ijms21217980 URL |
[34] |
Bossler F, Kuhn BJ, Günther T, et al. Repression of Human Papillomavirus Oncogene Expression under Hypoxia Is Mediated by PI3K/mTORC2/AKT Signaling[J]. mBio, 2019, 10(1):e02323-18. doi: 10.1128/mBio.02323-18.
doi: 10.1128/mBio.02323-18 |
[35] |
No YR, Lee SJ, Kumar A, et al. HIF1α-Induced by Lysophosphatidic Acid Is Stabilized via Interaction with MIF and CSN5[J]. PLoS One, 2015, 10(9):e0137513. doi: 10.1371/journal.pone.0137513.
doi: 10.1371/journal.pone.0137513 URL |
[1] | 许阡, 成九梅. 宫颈脂肪平滑肌瘤17例临床分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 390-394. |
[2] | 李丹萍, 连方, 相珊. 二甲双胍治疗多囊卵巢综合征的机制研究新进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 343-347. |
[3] | 楚漫微, 陈欢欢, 王倩, 王祎玟, 李丹, 杨淑珺, 张翠莲. miR-20a在妇科常见恶性肿瘤中的作用机制[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 172-176. |
[4] | 高亚婷, 王芳, 马建红, 马怡彤, 刘畅. 铜死亡在妇科恶性肿瘤中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 74-78. |
[5] | 张婷婷, 王黎, 俞萍源, 陈曦, 杨永秀. 宫颈小细胞神经内分泌癌一例并文献复习[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 462-466. |
[6] | 高亚婷, 马建红, 马怡彤, 刘畅. 铁死亡与宫颈癌相关性的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 436-440. |
[7] | 蒋思悦, 王文华, 曾超, 陈曦, 杨永秀. 吲哚菁绿荧光成像技术在宫颈癌根治术中的应用进展[J]. 国际生殖健康/计划生育, 2022, 41(6): 524-528. |
[8] | 李玉兰, 刘晓, 韩逢皎, 岳玲, 许飞雪. 高危型人乳头瘤病毒阴性宫颈癌的研究进展[J]. 国际生殖健康/计划生育, 2022, 41(4): 342-346. |
[9] | 滕飞, 薛凤霞. 肿瘤相关成纤维细胞在宫颈癌中的研究进展[J]. 国际生殖健康/计划生育, 2022, 41(2): 166-171. |
[10] | 安崇佑, 马耀梅. 宫颈胃型腺癌九例临床病理分析[J]. 国际生殖健康/计划生育, 2021, 40(5): 377-381. |
[11] | 韦莹婷, 邱丽华. 宫颈人乳头瘤病毒感染的转归与阴道微生物菌群相关性研究进展[J]. 国际生殖健康/计划生育, 2021, 40(3): 252-255. |
[12] | 乔国栋, 王永红. 中性粒细胞胞外诱捕网的形成及其在生殖相关疾病中的作用[J]. 国际生殖健康/计划生育, 2021, 40(3): 260-264. |
[13] | 尹兰兰, 汪晨曦, 马天仲. 体外激活治疗早发性卵巢功能不全的作用机制及进展[J]. 国际生殖健康/计划生育, 2020, 39(4): 319-323. |
[14] | 陈玉莹,崔满华,韩刚,张玥琳,贾妍. 宫颈癌根治术后腹腔间隔综合征一例诊治体会[J]. 国际生殖健康/计划生育, 2020, 39(3): 260-262. |
[15] | 佘茜,丁以标,王勇,姚玉萍. 上海某社区工作人员和医务人员对HPV及疫苗的认知调查[J]. 国际生殖健康/计划生育, 2020, 39(1): 40-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||