[1] |
陈铎, 侯雅勤, 时盼来, 等. 22q11.2微缺失综合征胎儿的产前诊断及家系分析[J]. 中华医学遗传学杂志, 2021, 38(7):659-662. doi:10.3760/cma.j.cn511374-20200402-00234.
doi: 10.3760/cma.j.cn511374-20200402-00234.
|
[2] |
Homans JF, Crowley TB, Chen E, et al. Club foot in association with the 22q11.2 deletion syndrome: An observational study[J]. Am J Med Genet A, 2018, 176(10):2135-2139. doi: 10.1002/ajmg.a.40649.
doi: 10.1002/ajmg.a.40649
pmid: 30380189
|
[3] |
McDonald-McGinn DM, Sullivan KE, Marino B, et al. 22q11.2 deletion syndrome[J]. Nat Rev Dis Primers, 2015, 1:15071. doi: 10.1038/nrdp.2015.71.
doi: 10.1038/nrdp.2015.71
pmid: 27189754
|
[4] |
Campbell IM, Sheppard SE, Crowley TB, et al. What is new with 22q? An update from the 22q and You Center at the Children’s Hospital of Philadelphia[J]. Am J Med Genet A, 2018, 176(10):2058-2069. doi: 10.1002/ajmg.a.40637.
doi: 10.1002/ajmg.a.40637
pmid: 30380191
|
[5] |
蔡美英, 林娜, 苏林涓, 等. 22q11微缺失综合征胎儿的产前超声特点及遗传学分析[J]. 中华医学遗传学杂志, 2021, 38(9):853-856. doi: 10.3760/cma.j.cn511374-20200331-00222.
doi: 10.3760/cma.j.cn511374-20200331-00222.
|
[6] |
Wenger TL, Miller JS, DePolo LM, et al. 22q11.2 duplication syndrome: elevated rate of autism spectrum disorder and need for medical screening[J]. Mol Autism, 2016, 7:27. doi: 10.1186/s13229-016-0090-z.
doi: 10.1186/s13229-016-0090-z
pmid: 27158440
|
[7] |
侯磊, 李介岩, 邢宇, 等. 22q11.2微缺失综合征胎儿的超声特征[J]. 首都医科大学学报, 2021, 42(2):183-187. doi: 10.3969/j.issn.1006-7795.2021.02.003.
doi: 10.3969/j.issn.1006-7795.2021.02.003
|
[8] |
孙晓燕, 王云英, 纪向虹. 22q11微缺失机制及临床应用研究进展[J]. 中国优生优育, 2012, 18(6):380-383. doi: 10.3969/j.issn.1007-3434.2012.06.018.
doi: 10.3969/j.issn.1007-3434.2012.06.018
|
[9] |
郝晓艳, 刘晓伟, 张烨, 等. 46例22q11.2微缺失综合征胎儿心脏超声特征及临床表型[J]. 中华围产医学杂志, 2020, 23(6):387-393. doi: 10.3760/cma.j.cn113903-20190812-00498.
doi: 10.3760/cma.j.cn113903-20190812-00498.
|
[10] |
周丽丽, 温郑静, 徐晨阳, 等. 微阵列芯片技术在颈项透明层增厚胎儿诊断中的应用价值[J]. 温州医科大学学报, 2021, 51(1):19-24. doi: 10.3969/j.issn.2095-9400.2021.01.004.
doi: 10.3969/j.issn.2095-9400.2021.01.004
|
[11] |
倪梦瑶, 李洁, 朱湘玉, 等. 染色体微阵列分析在颈项透明层增厚胎儿产前诊断中的应用[J]. 中华医学遗传学杂志, 2019, 36(10):970-974. doi: 10.3760/cma.j.issn.1003-9406.2019.10.005.
doi: 10.3760/cma.j.issn.1003-9406.2019.10.005
|
[12] |
Leung TY, Vogel I, Lau TK, et al. Identification of submicroscopic chromosomal aberrations in fetuses with increased nuchal translucency and apparently normal karyotype[J]. Ultrasound Obstet Gynecol, 2011, 38(3):314-319. doi: 10.1002/uog.8988.
doi: 10.1002/uog.8988
pmid: 21400624
|
[13] |
张文超, 赵梦川, 冯志山, 等. 先天性心脏病患儿染色体22q11微缺失的临床研究[J]. 河北医药, 2018, 40(17):2643-2646. doi: 10.3969/j.issn.1002-7386.2018.17.020.
doi: 10.3969/j.issn.1002-7386.2018.17.020
|
[14] |
黄欢, 黎新艳, 陈良剑, 等. 胎儿永存左上腔静脉的产前超声诊断特征及其临床意义[J]. 广西医学, 2017, 39(7):998-1001. doi: 10.11675/j.issn.0253-4304.2017.07.20.
doi: 10.11675/j.issn.0253-4304.2017.07.20
|
[15] |
路玥, 刘乐乐. TBX1基因影响22q11.2微缺失综合征表型的作用机制研究进展[J]. 医学研究生学报, 2020, 33(6):664-668. doi: 10.16571/j.cnki.1008-8199.2020.06.020.
doi: 10.16571/j.cnki.1008-8199.2020.06.020
|
[16] |
Lopez-Rivera E, Liu YP, Verbitsky M, et al. Genetic Drivers of Kidney Defects in the DiGeorge Syndrome[J]. N Engl J Med, 2017, 376(8):742-754. doi: 10.1056/NEJMoa1609009.
doi: 10.1056/NEJMoa1609009
URL
|
[17] |
Moon AM, Guris DL, Seo JH, et al. Crkl deficiency disrupts Fgf8 signaling in a mouse model of 22q11 deletion syndromes[J]. Dev Cell, 2006, 10(1):71-80. doi: 10.1016/j.devcel.2005.12.003.
doi: 10.1016/j.devcel.2005.12.003
pmid: 16399079
|
[18] |
Lopez-Rivera E, Liu YP, Verbitsky M, et al. Genetic Drivers of Kidney Defects in the DiGeorge Syndrome[J]. N Engl J Med, 2017, 376(8):742-754. doi: 10.1056/NEJMoa1609009.
doi: 10.1056/NEJMoa1609009
URL
|