[1] |
Zhang Y, Liu Z, Sun H. Fetal-maternal interactions during pregnancy: a ′three-in-one′ perspective[J]. Front Immunol, 2023, 14:1198430. doi: 10.3389/fimmu.2023.1198430.
|
[2] |
Wei Y, Ding J, Li J, et al. Metabolic Reprogramming of Immune Cells at the Maternal-Fetal Interface and the Development of Techniques for Immunometabolism[J]. Front Immunol, 2021,12:717014. doi: 10.3389/fimmu.2021.717014.
|
[3] |
Yang Q, Liu J, Wang Y, et al. A proteomic atlas of ligand-receptor interactions at the ovine maternal-fetal interface reveals the role of histone lactylation in uterine remodeling[J]. J Biol Chem, 2022, 298(1):101456. doi: 10.1016/j.jbc.2021.101456.
|
[4] |
Fan W, Qi Y, Wang Y, et al. Messenger roles of extracellular vesicles during fertilization of gametes, development and implantation: Recent advances[J]. Front Cell Dev Biol, 2022,10:1079387. doi: 10.3389/fcell.2022.1079387.
|
[5] |
Dekel N, Gnainsky Y, Granot I, et al. Inflammation and implantation[J]. Am J Reprod Immunol, 2010, 63(1):17-21. doi: 10.1111/j.1600-0897.2009.00792.x.
|
[6] |
Zhang X, Wei H. Role of Decidual Natural Killer Cells in Human Pregnancy and Related Pregnancy Complications[J]. Front Immunol, 2021,12:728291. doi: 10.3389/fimmu.2021.728291.
|
[7] |
Zhou WJ, Yang HL, Mei J, et al. Fructose-1,6-bisphosphate prevents pregnancy loss by inducing decidual COX-2+ macrophage differentiation[J]. Sci Adv, 2022, 8(8):eabj2488. doi: 10.1126/sciadv.abj2488.
|
[8] |
Liang X, Tang S, Song Y, et al. Effect of 2-deoxyglucose-mediated inhibition of glycolysis on migration and invasion of HTR-8/SVneo trophoblast cells[J]. J Reprod Immunol, 2023,159:104123. doi: 10.1016/j.jri.2023.104123.
|
[9] |
Su Y, Guo S, Liu C, et al. Endometrial pyruvate kinase M2 is essential for decidualization during early pregnancy[J]. J Endocrinol, 2020, 245(3):357-368. doi: 10.1530/JOE-19-0553.
pmid: 32208360
|
[10] |
Wang XH, Xu S, Zhou XY, et al. Low chorionic villous succinate accumulation associates with recurrent spontaneous abortion risk[J]. Nat Commun, 2021, 12(1):3428. doi: 10.1038/s41467-021-23827-0.
|
[11] |
Zuo RJ, Gu XW, Qi QR, et al. Warburg-like Glycolysis and Lactate Shuttle in Mouse Decidua during Early Pregnancy[J]. J Biol Chem, 2015, 290(35):21280-21291. doi: 10.1074/jbc.M115.656629.
|
[12] |
Yang W, Wang P, Cao P, et al. Hypoxic in vitro culture reduces histone lactylation and impairs pre-implantation embryonic development in mice[J]. Epigenetics Chromatin, 2021, 14(1):57. doi: 10.1186/s13072-021-00431-6.
pmid: 34930415
|
[13] |
Ozyurt R, Turktekin N. Endometrial polyps prevent embryo implantation via creatine and lactate pathways[J]. Eur Rev Med Pharmacol Sci, 2022, 26(9):3278-3281. doi: 10.26355/eurrev_202205_28746.
|
[14] |
Zhang X, Ji L, Li MO. Control of tumor-associated macrophage responses by nutrient acquisition and metabolism[J]. Immunity, 2023, 56(1):14-31. doi: 10.1016/j.immuni.2022.12.003.
pmid: 36630912
|
[15] |
Chambers M, Rees A, Cronin JG, et al. Macrophage Plasticity in Reproduction and Environmental Influences on Their Function[J]. Front Immunol, 2020,11:607328. doi: 10.3389/fimmu.2020.607328.
|
[16] |
Ji WH, Li DD, Wei DP, et al. Cytochrome P450 26A1 Modulates the Polarization of Uterine Macrophages During the Peri-Implantation Period[J]. Front Immunol, 2021,12:763067. doi: 10.3389/fimmu.2021.763067.
|
[17] |
Zhang Y, Ma L, Hu X, et al. The role of the PD-1/PD-L1 axis in macrophage differentiation and function during pregnancy[J]. Hum Reprod, 2019, 34(1):25-36. doi: 10.1093/humrep/dey347.
|
[18] |
You S, Zhu Y, Li H, et al. Recombinant humanized collagen remodels endometrial immune microenvironment of chronic endometritis through macrophage immunomodulation[J]. Regen Biomater, 2023,10:rbad033. doi: 10.1093/rb/rbad033.
|
[19] |
Ding J, Yang C, Zhang Y, et al. M2 macrophage-derived G-CSF promotes trophoblasts EMT, invasion and migration via activating PI3K/Akt/Erk1/2 pathway to mediate normal pregnancy[J]. J Cell Mol Med, 2021, 25(4):2136-2147. doi: 10.1111/jcmm.16191.
pmid: 33393205
|
[20] |
Li Y, Zhang D, Xu L, et al. Cell-cell contact with proinflammatory macrophages enhances the immunotherapeutic effect of mesenchymal stem cells in two abortion models[J]. Cell Mol Immunol, 2019, 16(12):908-920. doi: 10.1038/s41423-019-0204-6.
pmid: 30778166
|
[21] |
Ono Y, Yoshino O, Hiraoka T, et al. CD206+ M2-Like Macrophages Are Essential for Successful Implantation[J]. Front Immunol, 2020, 11:557184. doi: 10.3389/fimmu.2020.557184.
|
[22] |
Ye L, Huang W, Liu S, et al. Impacts of Immunometabolism on Male Reproduction[J]. Front Immunol, 2021,12:658432. doi: 10.3389/fimmu.2021.658432.
|
[23] |
Martin DE, Torrance BL, Haynes L, et al. Targeting Aging: Lessons Learned From Immunometabolism and Cellular Senescence[J]. Front Immunol, 2021,12:714742. doi: 10.3389/fimmu.2021.714742.
|
[24] |
Wang F, Zhang S, Jeon R, et al. Interferon Gamma Induces Reversible Metabolic Reprogramming of M1 Macrophages to Sustain Cell Viability and Pro-Inflammatory Activity[J]. EBioMedicine, 2018, 30:303-316. doi: 10.1016/j.ebiom.2018.02.009.
pmid: 29463472
|
[25] |
Rodríguez-Prados JC, Través PG, Cuenca J, et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation[J]. J Immunol, 2010, 185(1):605-614. doi: 10.4049/jimmunol.0901698.
pmid: 20498354
|
[26] |
Yang K, Xu J, Fan M, et al. Lactate Suppresses Macrophage Pro-Inflammatory Response to LPS Stimulation by Inhibition of YAP and NF-κB Activation via GPR81-Mediated Signaling[J]. Front Immunol, 2020,11:587913. doi: 10.3389/fimmu.2020.587913.
|
[27] |
Ma LN, Huang XB, Muyayalo KP, et al. Lactic Acid: A Novel Signaling Molecule in Early Pregnancy?[J]. Front Immunol, 2020, 11:279. doi: 10.3389/fimmu.2020.00279.
|
[28] |
Mu X, Shi W, Xu Y, et al. Tumor-derived lactate induces M2 macrophage polarization via the activation of the ERK/STAT3 signaling pathway in breast cancer[J]. Cell Cycle, 2018, 17(4):428-438. doi: 10.1080/15384101.2018.1444305.
pmid: 29468929
|
[29] |
Gao L, Xu QH, Ma LN, et al. Trophoblast-derived Lactic Acid Orchestrates Decidual Macrophage Differentiation via SRC/LDHA Signaling in Early Pregnancy[J]. Int J Biol Sci, 2022, 18(2):599-616. doi: 10.7150/ijbs.67816.
pmid: 35002512
|
[30] |
Huang HL, Yang HL, Lai ZZ, et al. Decidual IDO+ macrophage promotes the proliferation and restricts the apoptosis of trophoblasts[J]. J Reprod Immunol, 2021,148:103364. doi: 10.1016/j.jri.2021.103364.
|
[31] |
Sheng YR, Hu WT, Shen HH, et al. An imbalance of the IL-33/ST2-AXL-efferocytosis axis induces pregnancy loss through metabolic reprogramming of decidual macrophages[J]. Cell Mol Life Sci, 2022, 79(3):173. doi: 10.1007/s00018-022-04197-2.
|
[32] |
Dai JC, Yang JY, Chang RQ, et al. GAS6-mediated dialogue between decidual stromal cells and macrophages is essential for early pregnancy maintenance by inducing M2-like polarization and cell proliferation of decidual macrophages[J]. Mol Hum Reprod, 2022,28(3):gaac006 [J]. doi: 10.1093/molehr/gaac006.
|
[33] |
Zhang D, Tang Z, Huang H, et al. Metabolic regulation of gene expression by histone lactylation[J]. Nature, 2019, 574(7779):575-580. doi: 10.1038/s41586-019-1678-1.
|