国际生殖健康/计划生育杂志 ›› 2025, Vol. 44 ›› Issue (1): 41-46.doi: 10.12280/gjszjk.20240364
收稿日期:
2024-07-29
出版日期:
2025-01-15
发布日期:
2025-01-22
通讯作者:
汪彩珠,E-mail:基金资助:
CHEN Xue-hua, ZHOU Hong, WANG Cai-zhu()
Received:
2024-07-29
Published:
2025-01-15
Online:
2025-01-22
Contact:
WANG Cai-zhu, E-mail: 摘要:
辅助生殖技术(assisted reproductive technology,ART)的终极目标是实现单胎、足月、健康和活产。筛选最具发育潜能的胚胎进行单胚胎移植(single embryo transfer,SET)是实现该目标的有效措施。目前,最常用的无创筛选方法是形态学评分。虽然这种方法简便快捷,但缺乏足够的准确性。因此,开发更客观、全面、无创、准确地反映胚胎发育潜能的筛选方法尤为重要。讨论分析当前无创胚胎筛选的研究方法,包括时差成像(time-lapse imaging,TLI)、代谢组学(metabonomics)、蛋白质组学(proteomics)、微小RNA(microRNA,miRNA)和无创胚胎染色体筛查(noninvasive chromosomal screening,NICS),为未来的研究提供方向。
陈雪花, 周红, 汪彩珠. IVF-ET中无创胚胎筛选的研究进展[J]. 国际生殖健康/计划生育杂志, 2025, 44(1): 41-46.
CHEN Xue-hua, ZHOU Hong, WANG Cai-zhu. Research Progress of Noninvasive Embryo Screening in IVF-ET[J]. Journal of International Reproductive Health/Family Planning, 2025, 44(1): 41-46.
[1] | Chen P, Hu KL, Jin J, et al. Risk factors for twin pregnancy in women undergoing double cleavage embryo transfer[J]. BMC Pregnancy Childbirth, 2022, 22(1):264. doi: 10.1186/s12884-022-04606-1. |
[2] | Katler QS, Kawwass JF, Hurst BS, et al. Vanquishing multiple pregnancy in in vitro fertilization in the United States-a 25-year endeavor[J]. Am J Obstet Gynecol, 2022, 227(2):129-135. doi: 10.1016/j.ajog.2022.02.005. |
[3] | 季玉娟, 郑爱燕, 丁洁, 等. 优化选择性卵裂期单胚胎移植策略的妊娠结局分析[J]. 生殖医学杂志, 2022, 31(8):1022-1029. doi: 10.3969/j.issn.1004-3845.2022.08.002. |
[4] |
Lou H, Li N, Guan Y, et al. Association between morphologic grading and implantation rate of Euploid blastocyst[J]. J Ovarian Res, 2021, 14(1):18. doi: 10.1186/s13048-021-00770-8.
pmid: 33485390 |
[5] | Ozgur K, Berkkanoglu M, Bulut H, et al. Blastocyst age, expansion, trophectoderm morphology, and number cryopreserved are variables predicting clinical implantation in single blastocyst frozen embryo transfers in freeze-only-IVF[J]. J Assist Reprod Genet, 2021, 38(5):1077-1087. doi: 10.1007/s10815-021-02110-7. |
[6] | Hammond ER, Foong A, Rosli N, et al. Should we freeze it? Agreement on fate of borderline blastocysts is poor and does not improve with a modified blastocyst grading system[J]. Hum Reprod, 2020, 35(5):1045-1053. doi: 10.1093/humrep/deaa060. |
[7] | Fordham DE, Rosentraub D, Polsky AL, et al. Embryologist agreement when assessing blastocyst implantation probability: is data-driven prediction the solution to embryo assessment subjectivity?[J]. Hum Reprod, 2022, 37(10):2275-2290. doi: 10.1093/humrep/deac171. |
[8] | Cimadomo D, Soscia D, Vaiarelli A, et al. Looking past the appearance: a comprehensive description of the clinical contribution of poor-quality blastocysts to increase live birth rates during cycles with aneuploidy testing[J]. Hum Reprod, 2019, 34(7):1206-1214. doi: 10.1093/humrep/dez078. |
[9] | Apter S, Ebner T, Freour T, et al. Good practice recommendations for the use of time-lapse technology[J]. Hum Reprod Open, 2020, 2020(2):hoaa008. doi: 10.1093/hropen/hoaa008. |
[10] | 于婉莹, 苏兴, 崔静, 等. 早期异常卵裂对胚胎发育潜能及妊娠结局的影响[J]. 联勤军事医学, 2023, 37(6):472-476. doi: 10.13730/j.issn.2097-2148.2023.06.004. |
[11] |
Ozbek IY, Mumusoglu S, Polat M, et al. Comparison of single euploid blastocyst transfer cycle outcome derived from embryos with normal or abnormal cleavage patterns[J]. Reprod Biomed Online, 2021, 42(5):892-900. doi: 10.1016/j.rbmo.2021.02.005.
pmid: 33810985 |
[12] |
Bamford T, Barrie A, Montgomery S, et al. Morphological and morphokinetic associations with aneuploidy: a systematic review and meta-analysis[J]. Hum Reprod Update, 2022, 28(5):656-686. doi: 10.1093/humupd/dmac022.
pmid: 35613016 |
[13] | Huang B, Tan W, Li Z, et al. An artificial intelligence model (euploid prediction algorithm) can predict embryo ploidy status based on time-lapse data[J]. Reprod Biol Endocrinol, 2021, 19(1):185. doi: 10.1186/s12958-021-00864-4. |
[14] |
Canosa S, Licheri N, Bergandi L, et al. A novel machine-learning framework based on early embryo morphokinetics identifies a feature signature associated with blastocyst development[J]. J Ovarian Res, 2024, 17(1):63. doi: 10.1186/s13048-024-01376-6.
pmid: 38491534 |
[15] | Diakiw SM, Hall J, VerMilyea MD, et al. Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF[J]. Hum Reprod, 2022, 37(8):1746-1759. doi: 10.1093/humrep/deac131. |
[16] | VerMilyea M, Hall J, Diakiw SM, et al. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF[J]. Hum Reprod, 2020, 35(4):770-784. doi: 10.1093/humrep/deaa013. |
[17] | Benchaib M, Labrune E, Giscard d′Estaing S, et al. Shallow artificial networks with morphokinetic time-lapse parameters coupled to ART data allow to predict live birth[J]. Reprod Med Biol, 2022, 21(1):e12486. doi: 10.1002/rmb2.12486. |
[18] | Minasi MG, Greco P, Varricchio MT, et al. The clinical use of time-lapse in human-assisted reproduction[J]. Ther Adv Reprod Health, 2020,14:2633494120976921. doi: 10.1177/2633494120976921. |
[19] |
Sciorio R, Meseguer M. Focus on time-lapse analysis: blastocyst collapse and morphometric assessment as new features of embryo viability[J]. Reprod Biomed Online, 2021, 43(5):821-832. doi: 10.1016/j.rbmo.2021.08.008.
pmid: 34593324 |
[20] | Zmuidinaite R, Sharara FI, Iles RK. Current Advancements in Noninvasive Profiling of the Embryo Culture Media Secretome[J]. Int J Mol Sci, 2021, 22(5):2513. doi: 10.3390/ijms22052513. |
[21] | Iles RK, Sharara FI, Zmuidinaite R, et al. Secretome profile selection of optimal IVF embryos by matrix-assisted laser desorption ionization time-of-flight mass spectrometry[J]. J Assist Reprod Genet, 2019, 36(6):1153-1160. doi: 10.1007/s10815-019-01444-7. |
[22] | Figoli CB, Garcea M, Bisioli C, et al. A robust metabolomics approach for the evaluation of human embryos from in vitro fertilization[J]. Analyst, 2021, 146(20):6156-6169. doi: 10.1039/d1an01191j. |
[23] | Liang R, Duan SN, Fu M, et al. Prediction model for day 3 embryo implantation potential based on metabolites in spent embryo culture medium[J]. BMC Pregnancy Childbirth, 2023, 23(1):425. doi: 10.1186/s12884-023-05666-7. |
[24] | Pinto S, Guerra-Carvalho B, Crisóstomo L, et al. Metabolomics Integration in Assisted Reproductive Technologies for Enhanced Embryo Selection beyond Morphokinetic Analysis[J]. Int J Mol Sci, 2023, 25(1):491. doi: 10.3390/ijms25010491. |
[25] | Eldarov C, Gamisonia A, Chagovets V, et al. LC-MS Analysis Revealed the Significantly Different Metabolic Profiles in Spent Culture Media of Human Embryos with Distinct Morphology, Karyotype and Implantation Outcomes[J]. Int J Mol Sci, 2022, 23(5):2706. doi: 10.3390/ijms23052706. |
[26] | Brown C, Montina T, Inglis GD. Feather pulp: a novel substrate useful for proton nuclear magnetic resonance spectroscopy metabolomics and biomarker discovery[J]. Poult Sci, 2022, 101(7):101866. doi: 10.1016/j.psj.2022.101866. |
[27] |
Poli M, Ori A, Child T, et al. Characterization and quantification of proteins secreted by single human embryos prior to implantation[J]. EMBO Mol Med, 2015, 7(11):1465-1479. doi: 10.15252/emmm.201505344.
pmid: 26471863 |
[28] |
Katz-Jaffe MG, Gardner DK, Schoolcraft WB. Proteomic analysis of individual human embryos to identify novel biomarkers of development and viability[J]. Fertil Steril, 2006, 85(1):101-107. doi: 10.1016/j.fertnstert.2005.09.011.
pmid: 16412738 |
[29] |
Butler SA, Luttoo J, Freire MO, et al. Human chorionic gonadotropin (hCG) in the secretome of cultured embryos: hyperglycosylated hCG and hCG-free beta subunit are potential markers for infertility management and treatment[J]. Reprod Sci, 2013, 20(9):1038-1045. doi: 10.1177/1933719112472739.
pmid: 23439616 |
[30] | Kaihola H, Yaldir FG, Bohlin T, et al. Levels of caspase-3 and histidine-rich glycoprotein in the embryo secretome as biomarkers of good-quality day-2 embryos and high-quality blastocysts[J]. PLoS One, 2019, 14(12):e0226419. doi: 10.1371/journal.pone.022641. |
[31] |
Montskó G, Gödöny K, Herczeg R, et al. Alpha-1 chain of human haptoglobin as viability marker of in vitro fertilized human embryos: information beyond morphology[J]. Syst Biol Reprod Med, 2019, 65(2):174-180. doi: 10.1080/19396368.2018.1518499.
pmid: 30222008 |
[32] | Toporcerová S, Špaková I, Šoltys K, et al. Small Non-Coding RNAs as New Biomarkers to Evaluate the Quality of the Embryo in the IVF Process[J]. Biomolecules, 2022, 12(11):1687. doi: 10.3390/biom12111687. |
[33] | Esmaeilivand M, Abedelahi A, Hamdi K, et al. Role of miRNAs in preimplantation embryo development and their potential as embryo selection biomarkers[J]. Reprod Fertil Dev, 2022, 34(8):589-597. doi: 10.1071/RD21274. |
[34] |
Abu-Halima M, Khaizaran ZA, Ayesh BM, et al. MicroRNAs in combined spent culture media and sperm are associated with embryo quality and pregnancy outcome[J]. Fertil Steril, 2020, 113(5):970-980.e2. doi: 10.1016/j.fertnstert.2019.12.028.
pmid: 32222254 |
[35] | Esmaeilivand M, Ghasemzadeh A, Niknafs B, et al. Association of Trophectoderm mRNAs and MicroRNAs with Chromosomal Aneuploidy of Embryo[J]. Reprod Sci, 2024, 31(4):1028-1033. doi: 10.1007/s43032-023-01381-y. |
[36] | Xu J, Fang R, Chen L, et al. Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization[J]. Proc Natl Acad Sci U S A, 2016, 113(42):11907-11912. doi: 10.1073/pnas.1613294113. |
[37] | Huang L, Bogale B, Tang Y, et al. Noninvasive preimplantation genetic testing for aneuploidy in spent medium may be more reliable than trophectoderm biopsy[J]. Proc Natl Acad Sci U S A, 2019, 116(28):14105-14112. doi: 10.1073/pnas.1907472116. |
[38] |
Fang R, Yang W, Zhao X, et al. Chromosome screening using culture medium of embryos fertilised in vitro: a pilot clinical study[J]. J Transl Med, 2019, 17(1):73. doi: 10.1186/s12967-019-1827-1.
pmid: 30849973 |
[39] | Chen L, Sun Q, Xu J, et al. A Non-invasive Chromosome Screening Strategy for Prioritizing in vitro Fertilization Embryos for Implantation[J]. Front Cell Dev Biol, 2021,9:708322. doi: 10.3389/fcell.2021.708322. |
[40] | Sun BL, Wang Y, Sixi-Wen, et al. Effectiveness of non-invasive chromosomal screening for normal karyotype and chromosomal rearrangements[J]. Front Genet, 2023,14:1036467. doi: 10.3389/fgene.2023.1036467. |
[41] | Xi H, Qiu L, Yao Y, et al. Noninvasive Chromosome Screening for Evaluating the Clinical Outcomes of Patients With Recurrent Pregnancy Loss or Repeated Implantation Failure[J]. Front Endocrinol(Lausanne), 2022,13:896357. doi: 10.3389/fendo.2022.896357. |
[1] | 卞海军, 张馨月, 冯睿芝, 钱云. 精子因素对胚胎发育的影响[J]. 国际生殖健康/计划生育杂志, 2025, 44(2): 150-154. |
[2] | 宫政, 赵晓丽, 王宝娟, 董融, 刘凇含, 王聪, 夏天. 宫寒型反复种植失败患者子宫内膜蛋白质组学研究[J]. 国际生殖健康/计划生育杂志, 2025, 44(1): 1-8. |
[3] | 张睿妍, 邓涵瑜, 陈柯欣, 马梲铫, 刘悦, 丁之德. 附睾小体调节精子成熟和父系表观遗传的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 518-523. |
[4] | 傅婉玉, 金莎汶, 江矞颖, 李燕青. 无创产前筛查技术在罕见常染色体三体及染色体拷贝数变异的临床效果分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 279-283. |
[5] | 焦梦文, 张月文, 王玲, 莫少康. 环状RNA在生殖系统的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 322-327. |
[6] | 赵安琪, 刘霖, 谭小方. HPV经精子传播及其对早期胚胎发育的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 328-331. |
[7] | 李苗苗, 江洪, 蔡朋达. 胚胎停育的影响因素分析及预测研究[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 332-337. |
[8] | 田维娟, 周美花, 蒋璐西, 张琼. 染色体易位合并嵌合型标记染色体致猫叫综合征一例[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 380-383. |
[9] | 倪丹玉, 杨烨, 谢奇君, 姜薇, 凌秀凤. 卵细胞质内单精子注射后多原核发生率对胚胎发育和妊娠结局的影响[J]. 国际生殖健康/计划生育杂志, 2023, 42(4): 272-276. |
[10] | 闻鑫, 赵晓丽, 栾祖乾, 高娜, 董融, 夏天. N6-甲基腺嘌呤修饰在卵子发生及早期胚胎发育中的调控作用[J]. 国际生殖健康/计划生育杂志, 2023, 42(4): 310-316. |
[11] | 崔毓桂, 贾洪燕, 施陈楠, 严正杰, 刘嘉茵, 马翔. 卵母细胞线粒体移植及其伦理问题[J]. 国际生殖健康/计划生育杂志, 2023, 42(2): 89-94. |
[12] | 甘冬英, 周红. 高龄女性卵子微环境的代谢组学研究进展[J]. 国际生殖健康/计划生育, 2022, 41(6): 494-498. |
[13] | 陈志坚, 汪彩珠. 时差成像技术用于胚胎选择的研究进展[J]. 国际生殖健康/计划生育, 2022, 41(2): 139-142. |
[14] | 毛菲, 冯睿芝, 钱云. 哺乳动物卵泡相关代谢组学研究进展[J]. 国际生殖健康/计划生育, 2021, 40(6): 471-475. |
[15] | 陈然然, 宋殿荣. 胚胎早期发育过程中主要信号通路的作用机制[J]. 国际生殖健康/计划生育, 2021, 40(6): 481-485. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||