[1] |
Mu J, Zhou Z, Sang Q, et al. The physiological and pathological mechanisms of early embryonic development[J]. Fundam Res, 2022, 2(6):859-872. doi: 10.1016/j.fmre.2022.08.011.
|
[2] |
Zhang J, Lv J, Qin J, et al. Unraveling the mysteries of early embryonic arrest: genetic factors and molecular mechanisms[J]. J Assist Reprod Genet, 2024, 41(12):3301-3316. doi: 10.1007/s10815-024-03259-7.
|
[3] |
Li J, Luo L, Diao J, et al. Male sperm quality and risk of recurrent spontaneous abortion in Chinese couples: A systematic review and meta-analysis[J]. Medicine(Baltimore), 2021, 100(10):e24828. doi: 10.1097/MD.0000000000024828.
|
[4] |
Nikolova S, Parvanov D, Georgieva V, et al. Impact of sperm characteristics on time-lapse embryo morphokinetic parameters and clinical outcome of conventional in vitro fertilization[J]. Andrology, 2020, 8(5):1107-1116. doi: 10.1111/andr.12781.
pmid: 32119189
|
[5] |
黄文军, 刘力, 马雪娟. 精子形态对体外受精—胚胎移植结局的影响[J]. 青海医药杂志, 2022, 52(8):17-19.
|
[6] |
Yazdanpanah Ghadikolaei P, Ghaleno LR, Vesali S, et al. Epidemiology of sperm DNA fragmentation in a retrospective cohort of 1191 men[J]. Andrology, 2023, 11(8):1663-1672. doi: 10.1111/andr.13472.
pmid: 37280171
|
[7] |
Andrabi SW, Ara A, Saharan A, et al. Sperm DNA Fragmentation: causes, evaluation and management in male infertility[J]. JBRA Assist Reprod, 2024, 28(2):306-319.doi:10.5935/1518-0557.20230076.
|
[8] |
Zhou W, Zhang J, Cheng Z, et al. Mean number of DNA breakpoints: illuminating sperm DNA integrity and in vitro fertilization outcomes[J]. Fertil Steril, 2024, 121(2):264-270. doi: 10.1016/j.fertnstert.2023.11.026.
|
[9] |
Gao J, Yan Z, Yan L, et al. The effect of sperm DNA fragmentation on the incidence and origin of whole and segmental chromosomal aneuploidies in human embryos[J]. Reproduction, 2023, 166(2):117-124. doi: 10.1530/REP-23-0011.
|
[10] |
Kaiyal RS, Karna KK, Kuroda S, et al. Sperm chromatin dispersion assay reliability and assisted reproductive technology outcomes: Systematic review and meta-analysis[J]. Andrology,2024 Aug 12. doi: 10.1111/andr.13725.
|
[11] |
林垲皓. 精子性染色体非整倍体发生机制研究进展[J]. 中华男科学杂志, 2021, 27(6):547-552. doi: 10.13263/j.cnki.nja.2021.06.012.
|
[12] |
Burrello N, Vicari E, Shin P, et al. Lower sperm aneuploidy frequency is associated with high pregnancy rates in ICSI programmes[J]. Hum Reprod, 2003, 18(7):1371-1376. doi: 10.1093/humrep/deg299.
pmid: 12832359
|
[13] |
Nicopoullos JD, Gilling-Smith C, Almeida PA, et al. The role of sperm aneuploidy as a predictor of the success of intracytoplasmic sperm injection?[J]. Hum Reprod, 2008, 23(2):240-250. doi: 10.1093/humrep/dem395.
|
[14] |
Bolzán AD. Considerations on the scoring of telomere aberrations in vertebrate cells detected by telomere or telomere plus centromere PNA-FISH[J]. Mutat Res Rev Mutat Res, 2024,794:108507. doi: 10.1016/j.mrrev.2024.108507.
|
[15] |
Erdem HB, Bahsi T, Ergün MA. Function of telomere in aging and age related diseases[J]. Environ Toxicol Pharmacol, 2021,85:103641. doi: 10.1016/j.etap.2021.103641.
|
[16] |
Amirzadegan M, Sadeghi N, Tavalaee M, et al. Analysis of leukocyte and sperm telomere length in oligozoospermic men[J]. Andrologia, 2021, 53(10):e14204. doi: 10.1111/and.14204.
|
[17] |
Yuan Y, Tan Y, Qiu X, et al. Sperm telomere length as a novel biomarker of male infertility and embryonic development: A systematic review and meta-analysis[J]. Front Endocrinol(Lausanne), 2022,13:1079966. doi: 10.3389/fendo.2022.1079966.
|
[18] |
Ribas-Maynou J, Mateo-Otero Y, Sanchez-Quijada M, et al. Telomere Length in Pig Sperm Is Related to In Vitro Embryo Development Outcomes[J]. Animals(Basel), 2022, 12(2):204. doi: 10.3390/ani12020204.
|
[19] |
张睿妍, 邓涵瑜, 陈柯欣, 等. 附睾小体调节精子成熟和父系表观遗传的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(6):518-523. doi: 10.12280/gjszjk.20240381.
|
[20] |
Vallet-Buisan M, Mecca R, Jones C, et al. Contribution of semen to early embryo development: fertilization and beyond[J]. Hum Reprod Update, 2023, 29(4):395-433. doi: 10.1093/humupd/dmad006.
pmid: 36882116
|
[21] |
Li H, Wang Z, Zhao B, et al. Sperm-borne lncRNA loc100847420 improves development of early bovine embryos[J]. Anim Reprod Sci, 2023,257:107333. doi: 10.1016/j.anireprosci.2023.107333.
|
[22] |
Wu C, Blondin P, Vigneault C, et al. Sperm miRNAs-potential mediators of bull age and early embryo development[J]. BMC Genomics, 2020, 21(1):798. doi: 10.1186/s12864-020-07206-5.
|
[23] |
Cui L, Fang L, Zhuang L, et al. Sperm-borne microRNA-34c regulates maternal mRNA degradation and preimplantation embryonic development in mice[J]. Reprod Biol Endocrinol, 2023, 21(1):40. doi: 10.1186/s12958-023-01089-3.
|
[24] |
Wang M, Du Y, Gao S, et al. Sperm-borne miR-202 targets SEPT7 and regulates first cleavage of bovine embryos via cytoskeletal remodeling[J]. Development, 2021, 148(5):dev189670. doi: 10.1242/dev.189670.
|
[25] |
Liang K, Yao L, Wang S, et al. miR-125a-5p increases cellular DNA damage of aging males and perturbs stage-specific embryo development via Rbm38-p53 signaling[J]. Aging Cell, 2021, 20(12):e13508. doi: 10.1111/acel.13508.
|
[26] |
Li H, Li L, Lin C, et al. Decreased miR-149 expression in sperm is correlated with the quality of early embryonic development in conventional in vitro fertilization[J]. Reprod Toxicol, 2021, 101:28-32. doi: 10.1016/j.reprotox.2021.02.005.
pmid: 33610732
|
[27] |
Chioccarelli T, Falco G, Cappetta D, et al. FUS driven circCNOT6L biogenesis in mouse and human spermatozoa supports zygote development[J]. Cell Mol Life Sci, 2021, 79(1):50. doi: 10.1007/s00018-021-04054-8.
pmid: 34936029
|
[28] |
Biellmann F, Hülsmeier AJ, Zhou D, et al. The Lc3-synthase gene B3gnt5 is essential to pre-implantation development of the murine embryo[J]. BMC Dev Biol, 2008,8:109. doi: 10.1186/1471-213X-8-109.
|
[29] |
Wang L, Magdaleno S, Tabas I, et al. Early embryonic lethality in mice with targeted deletion of the CTP: phosphocholine cytidylyltransferase alpha gene (Pcyt1a)[J]. Mol Cell Biol, 2005, 25(8):3357-3363. doi: 10.1128/MCB.25.8.3357-3363.2005.
|
[30] |
Zhou D, Wu H, Wang L, et al. Deficiency of MFSD6L, an acrosome membrane protein, causes oligoasthenoteratozoospermia in humans and mice[J]. J Genet Genomics, 2024, 51(10):1007-1019. doi: 10.1016/j.jgg.2024.06.008.
|
[31] |
Sugita H, Takarabe S, Kageyama A, et al. Molecular Mechanism of Oocyte Activation in Mammals: Past, Present, and Future Directions[J]. Biomolecules, 2024, 14(3):359. doi: 10.3390/biom14030359.
|
[32] |
Nakai M, Suzuki SI, Fuchimoto DI, et al. Oocyte activation with phospholipase Cζ mRNA induces repetitive intracellular Ca(2+) rises and improves the quality of pig embryos after intracytoplasmic sperm injection[J]. J Reprod Dev, 2024, 70(4):229-237. doi: 10.1262/jrd.2023-105.
|
[33] |
Joshi A, Rienks M, Theofilatos K, et al. Systems biology in cardiovascular disease: a multiomics approach[J]. Nat Rev Cardiol, 2021, 18(5):313-330. doi: 10.1038/s41569-020-00477-1.
pmid: 33340009
|
[34] |
Wu H, Zhang X, Yang J, et al. Taurine and its transporter TAUT positively affect male reproduction and early embryo development[J]. Hum Reprod, 2022, 37(6):1229-1243. doi: 10.1093/humrep/deac089.
|