国际生殖健康/计划生育 ›› 2021, Vol. 40 ›› Issue (6): 471-475.doi: 10.12280/gjszjk.20210203
收稿日期:
2021-05-10
出版日期:
2021-11-15
发布日期:
2021-11-30
通讯作者:
钱云
E-mail:qianyun@njmu.edu.cn
基金资助:
MAO Fei, FENG Rui-zhi, QIAN Yun()
Received:
2021-05-10
Published:
2021-11-15
Online:
2021-11-30
Contact:
QIAN Yun
E-mail:qianyun@njmu.edu.cn
摘要:
卵母细胞质量是决定辅助生殖结局的一项重要因素,创建一种简单可靠的卵母细胞质量评价体系有助于提高辅助生殖的成功率。新兴的代谢组学有望成为评估卵母细胞质量的新方法。目前,代谢组学已广泛应用于女性生殖相关的科学研究,通过对卵母细胞、颗粒细胞和卵泡液等样品中的中小分子进行定性和定量分析,研究者们寻找到多种与女性不孕相关的标志性代谢物,涉及糖类、脂质和氨基酸等多种物质的代谢,对于临床不孕症的诊断和治疗具有潜在的应用价值。综述近年哺乳动物卵泡相关的代谢组学研究。
毛菲, 冯睿芝, 钱云. 哺乳动物卵泡相关代谢组学研究进展[J]. 国际生殖健康/计划生育, 2021, 40(6): 471-475.
MAO Fei, FENG Rui-zhi, QIAN Yun. Research Progress in Metabolomics of Mammalian Follicles[J]. Journal of International Reproductive Health/Family Planning, 2021, 40(6): 471-475.
[1] |
Laisk T, Tšuiko O, Jatsenko T, et al. Demographic and evolutionary trends in ovarian function and aging[J]. Hum Reprod Update, 2019, 25(1):34-50. doi: 10.1093/humupd/dmy031.
doi: 10.1093/humupd/dmy031 |
[2] |
Zhou Z, Zheng D, Wu H, et al. Epidemiology of infertility in China: a population-based study[J]. BJOG, 2018, 125(4):432-441. doi: 10.1111/1471-0528.14966.
doi: 10.1111/1471-0528.14966 URL |
[3] |
Montani DA, Braga D, Borges E Jr, et al. Understanding mechanisms of oocyte development by follicular fluid lipidomics[J]. J Assist Reprod Genet, 2019, 36(5):1003-1011. doi: 10.1007/s10815-019-01428-7.
doi: 10.1007/s10815-019-01428-7 URL |
[4] |
Castiglione Morelli MA, Iuliano A, Schettini S, et al. NMR metabolic profiling of follicular fluid for investigating the different causes of female infertility: a pilot study[J]. Metabolomics, 2019, 15(2):19. doi: 10.1007/s11306-019-1481-x.
doi: 10.1007/s11306-019-1481-x pmid: 30830455 |
[5] |
Li L, Zhu S, Shu W, et al. Characterization of Metabolic Patterns in Mouse Oocytes during Meiotic Maturation[J]. Mol Cell, 2020, 80(3):525-540.e9. doi: 10.1016/j.molcel.2020.09.022.
doi: 10.1016/j.molcel.2020.09.022 URL |
[6] |
Guijas C, Montenegro-Burke JR, Warth B, et al. Metabolomics activity screening for identifying metabolites that modulate phenotype[J]. Nat Biotechnol, 2018, 36(4):316-320. doi: 10.1038/nbt.4101.
doi: 10.1038/nbt.4101 URL |
[7] |
Rajska A, Buszewska-Forajta M, Rachoń D, et al. Metabolomic Insight into Polycystic Ovary Syndrome-An Overview[J]. Int J Mol Sci, 2020, 21(14):4853. doi: 10.3390/ijms21144853.
doi: 10.3390/ijms21144853 URL |
[8] |
Khan R, Jiang X, Hameed U, et al. Role of Lipid Metabolism and Signaling in Mammalian Oocyte Maturation, Quality, and Acquisition of Competence[J]. Front Cell Dev Biol, 2021, 9:639704. doi: 10.3389/fcell.2021.639704.
doi: 10.3389/fcell.2021.639704 URL |
[9] |
Fontana J, Martínková S, Petr J, et al. Metabolic cooperation in the ovarian follicle[J]. Physiol Res, 2020, 69(1):33-48. doi: 10.33549/physiolres.934233.
doi: 10.33549/physiolres.934233 pmid: 31854191 |
[10] |
Uhde K, van Tol H, Stout T, et al. Metabolomic profiles of bovine cumulus cells and cumulus-oocyte-complex-conditioned medium during maturation in vitro[J]. Sci Rep, 2018, 8(1):9477. doi: 10.1038/s41598-018-27829-9.
doi: 10.1038/s41598-018-27829-9 URL |
[11] |
Yang J, Feng T, Li S, et al. Human follicular fluid shows diverse metabolic profiles at different follicle developmental stages[J]. Reprod Biol Endocrinol, 2020, 18(1):74. doi: 10.1186/s12958-020-00631-x.
doi: 10.1186/s12958-020-00631-x URL |
[12] |
Agarwal A, Sengupta P, Durairajanayagam D. Role of L-carnitine in female infertility[J]. Reprod Biol Endocrinol, 2018, 16(1):5. doi: 10.1186/s12958-018-0323-4.
doi: 10.1186/s12958-018-0323-4 URL |
[13] |
Giorgi VS, Da Broi MG, Paz CC, et al. N-Acetyl-Cysteine and l-Carnitine Prevent Meiotic Oocyte Damage Induced by Follicular Fluid From Infertile Women With Mild Endometriosis[J]. Reprod Sci, 2016, 23(3):342-351. doi: 10.1177/1933719115602772.
doi: 10.1177/1933719115602772 URL |
[14] |
Jiang W, Li Y, Zhao Y, et al. l-carnitine supplementation during in vitro culture regulates oxidative stress in embryos from bovine aged oocytes[J]. Theriogenology, 2020, 143:64-73. doi: 10.1016/j.theriogenology.2019.11.036.
doi: 10.1016/j.theriogenology.2019.11.036 URL |
[15] |
Kalhori Z, Mehranjani MS, Azadbakht M, et al. L-Carnitine improves endocrine function and folliculogenesis by reducing inflammation, oxidative stress and apoptosis in mice following induction of polycystic ovary syndrome[J]. Reprod Fertil Dev, 2019, 31(2):282-293. doi: 10.1071/RD18131.
doi: 10.1071/RD18131 URL |
[16] |
Kitano Y, Hashimoto S, Matsumoto H, et al. Oral administration of l-carnitine improves the clinical outcome of fertility in patients with IVF treatment[J]. Gynecol Endocrinol, 2018, 34(8):684-688. doi: 10.1080/09513590.2018.1431769.
doi: 10.1080/09513590.2018.1431769 pmid: 29378447 |
[17] |
Zhang H, McClatchie T, Baltz JM. l-Serine transport in growing and maturing mouse oocytes[J]. J Cell Physiol, 2020, 235(11):8585-8600. doi: 10.1002/jcp.29702.
doi: 10.1002/jcp.29702 pmid: 32329057 |
[18] |
Xie HL, Zhu S, Zhang J, et al. Glucose metabolism during in vitro maturation of mouse oocytes: An study using RNA interference[J]. J Cell Physiol, 2018, 233(9):6952-6964. doi: 10.1002/jcp.26484.
doi: 10.1002/jcp.26484 URL |
[19] |
Walter J, Huwiler F, Fortes C, et al. Analysis of the equine "cumulome" reveals major metabolic aberrations after maturation in vitro[J]. BMC Genomics, 2019, 20(1):588. doi: 10.1186/s12864-019-5836-5.
doi: 10.1186/s12864-019-5836-5 URL |
[20] |
Cetica P, Pintos L, Dalvit G, et al. Involvement of enzymes of amino acid metabolism and tricarboxylic acid cycle in bovine oocyte maturation in vitro[J]. Reproduction, 2003, 126(6):753-763.
pmid: 14748694 |
[21] |
Rosen MP, Shen S, Dobson AT, et al. A quantitative assessment of follicle size on oocyte developmental competence[J]. Fertil Steril, 2008, 90(3):684-690. doi: 10.1016/j.fertnstert.2007.02.011.
doi: 10.1016/j.fertnstert.2007.02.011 URL |
[22] |
Wirleitner B, Okhowat J, Vištejnová L, et al. Relationship between follicular volume and oocyte competence, blastocyst development and live-birth rate: optimal follicle size for oocyte retrieval[J]. Ultrasound Obstet Gynecol, 2018, 51(1):118-125. doi: 10.1002/uog.18955.
doi: 10.1002/uog.18955 pmid: 29134715 |
[23] |
Mohr-Sasson A, Orvieto R, Blumenfeld S, et al. The association between follicle size and oocyte development as a function of final follicular maturation triggering[J]. Reprod Biomed Online, 2020, 40(6):887-893. doi: 10.1016/j.rbmo.2020.02.005.
doi: S1472-6483(20)30093-6 pmid: 32389425 |
[24] |
Sun Z, Song J, Zhang X, et al. SWATH(HM)-Based Metabolomics of Follicular Fluid in Patients Shows That Progesterone Adversely Affects Oocyte Quality[J]. Biomed Res Int, 2018, 2018:1780391. doi: 10.1155/2018/1780391.
doi: 10.1155/2018/1780391 |
[25] |
Zhang X, Wang T, Song J, et al. Study on follicular fluid metabolomics components at different ages based on lipid metabolism[J]. Reprod Biol Endocrinol, 2020, 18(1):42. doi: 10.1186/s12958-020-00599-8.
doi: 10.1186/s12958-020-00599-8 URL |
[26] |
Luti S, Fiaschi T, Magherini F, et al. Relationship between the metabolic and lipid profile in follicular fluid of women undergoing in vitro fertilization[J]. Mol Reprod Dev, 2020, 87(9):986-997. doi: 10.1002/mrd.23415.
doi: 10.1002/mrd.23415 URL |
[27] |
Zarezadeh R, Nouri M, Hamdi K, et al. Fatty acids of follicular fluid phospholipids and triglycerides display distinct association with IVF outcomes[J]. Reprod Biomed Online, 2021, 42(2):301-309. doi: 10.1016/j.rbmo.2020.09.024.
doi: 10.1016/j.rbmo.2020.09.024 pmid: 33279420 |
[28] |
Shibahara H, Ishiguro A, Inoue Y, et al. Mechanism of palmitic acid-induced deterioration of in vitro development of porcine oocytes and granulosa cells[J]. Theriogenology, 2020, 141:54-61. doi: 10.1016/j.theriogenology.2019.09.006.
doi: S0093-691X(19)30388-7 pmid: 31518729 |
[29] |
Itami N, Shirasuna K, Kuwayama T, et al. Palmitic acid induces ceramide accumulation, mitochondrial protein hyperacetylation, and mitochondrial dysfunction in porcine oocytes[J]. Biol Reprod, 2018, 98(5):644-653. doi: 10.1093/biolre/ioy023.
doi: 10.1093/biolre/ioy023 URL |
[30] |
Sessions-Bresnahan DR, Schauer KL, Heuberger AL, et al. Effect of Obesity on the Preovulatory Follicle and Lipid Fingerprint of Equine Oocytes[J]. Biol Reprod, 2016, 94(1):15. doi: 10.1095/biolreprod.115.130187.
doi: 10.1095/biolreprod.115.130187 pmid: 26632608 |
[31] |
Song J, Wang X, Guo Y, et al. Novel high-coverage targeted metabolomics method (SWATHtoMRM) for exploring follicular fluid metabolome alterations in women with recurrent spontaneous abortion undergoing in vitro fertilization[J]. Sci Rep, 2019, 9(1):10873. doi: 10.1038/s41598-019-47370-7.
doi: 10.1038/s41598-019-47370-7 URL |
[32] |
Fayezi S, Leroy J, Ghaffari Novin M, et al. Oleic acid in the modulation of oocyte and preimplantation embryo development[J]. Zygote, 2018, 26(1):1-13. doi: 10.1017/S0967199417000582.
doi: 10.1017/S0967199417000582 URL |
[33] |
邢亚楠, 张勇, 黄娇娇, 等. 母马大、小卵泡的卵泡液代谢组学分析及其对卵泡发育的影响[J]. 中国畜牧杂志, 2019, 55(10):5-9. doi: CNKI:SUN:ZGXM.0.2019-10-002.
doi: CNKI:SUN:ZGXM.0.2019-10-002 |
[34] |
Neven A, Laven J, Teede HJ, et al. A Summary on Polycystic Ovary Syndrome: Diagnostic Criteria, Prevalence, Clinical Manifestations, and Management According to the Latest International Guidelines[J]. Semin Reprod Med, 2018, 36(1):5-12. doi: 10.1055/s-0038-1668085.
doi: 10.1055/s-0038-1668085 URL |
[35] |
Yang Z, Zhou W, Zhou C, et al. Steroid metabolome profiling of follicular fluid in normo- and hyperandrogenic women with polycystic ovary syndrome[J]. J Steroid Biochem Mol Biol, 2021, 206:105806. doi: 10.1016/j.jsbmb.2020.105806.
doi: 10.1016/j.jsbmb.2020.105806 URL |
[36] |
Sun Z, Chang HM, Wang A, et al. Identification of potential metabolic biomarkers of polycystic ovary syndrome in follicular fluid by SWATH mass spectrometry[J]. Reprod Biol Endocrinol, 2019, 17(1):45. doi: 10.1186/s12958-019-0490-y.
doi: 10.1186/s12958-019-0490-y URL |
[37] |
Chen X, Lu T, Wang X, et al. Metabolic alterations associated with polycystic ovary syndrome: A UPLC Q-Exactive based metabolomic study[J]. Clin Chim Acta, 2020, 502:280-286. doi: 10.1016/j.cca.2019.11.016.
doi: 10.1016/j.cca.2019.11.016 URL |
[38] |
Chen M, Zhang B, Cai S, et al. Metabolic disorder of amino acids, fatty acids and purines reflects the decreases in oocyte quality and potential in sows[J]. J Proteomics, 2019, 200:134-143. doi: 10.1016/j.jprot.2019.03.015.
doi: 10.1016/j.jprot.2019.03.015 URL |
[39] |
Bai Y, Zhang F, Zhang H, et al. Follicular Fluid Metabolite Changes in Dairy Cows with Inactive Ovary Identified Using Untargeted Metabolomics[J]. Biomed Res Int, 2020, 2020:9837543. doi: 10.1155/2020/9837543.
doi: 10.1155/2020/9837543 |
[1] | 肖楠, 李永程, 姚义鸣, 孙红文, 姚汝强, 陈泳君, 殷宇辰, 罗海宁. 卵巢微环境内邻苯二甲酸酯暴露与炎性因子水平的关系[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 353-360. |
[2] | 江楠, 赵晓丽, 栾祖乾, 黄志云, 夏天. 高龄女性卵母细胞内氧化应激与非整倍体相关性研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 415-419. |
[3] | 曹媛媛, 贾赞慧, 张春苗. ZP1基因突变在空卵泡综合征中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 127-131. |
[4] | 闻星星, 柴梦晗, 杨倪, 邹慧娟, 章志国, 李琳, 陈蓓丽. TUBB8基因c.154-156del杂合变异致卵母细胞成熟阻滞一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 17-19. |
[5] | 张宇杰, 王文成, 张宁. GDF-9和BMP-15在PCOS卵泡发育及胰岛素抵抗中的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 487-491. |
[6] | 叶明珠, 郑洁, 李杰芃, 许莉欣. 医源性卵巢储备功能减退患者的卵母细胞冷冻生育力保存应用[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 498-502. |
[7] | 牛国燕, 熊正方. 经阴道超声引导下穿刺取卵术镇痛方式的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 507-512. |
[8] | 柳絮, 杨爱军, 李泽武, 石城, 刘利君, 孔潇丽, 王靖雯. 富血小板血浆改善卵巢储备功能的相关机制[J]. 国际生殖健康/计划生育杂志, 2023, 42(4): 329-333. |
[9] | 李延, 胡方方, 陈欢欢, 张磊, 张翠莲, 梁琳琳. 窦前卵泡体外三维培养系统研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(3): 221-225. |
[10] | 杨志娟, 姚婷, 侯海燕. 线粒体自噬与卵巢功能[J]. 国际生殖健康/计划生育杂志, 2023, 42(3): 240-244. |
[11] | 田辉, 张宇, 赵晓曦. PIWI蛋白相互作用RNA与生殖功能的关系[J]. 国际生殖健康/计划生育杂志, 2023, 42(2): 150-155. |
[12] | 崔毓桂, 贾洪燕, 施陈楠, 严正杰, 刘嘉茵, 马翔. 卵母细胞线粒体移植及其伦理问题[J]. 国际生殖健康/计划生育杂志, 2023, 42(2): 89-94. |
[13] | 甘冬英, 周红. 高龄女性卵子微环境的代谢组学研究进展[J]. 国际生殖健康/计划生育, 2022, 41(6): 494-498. |
[14] | 王子昕, 宋佳怡, 夏天. 昼夜节律紊乱对女性卵巢功能的影响[J]. 国际生殖健康/计划生育, 2022, 41(4): 317-321. |
[15] | 张婕, 王菁, 侯振, 冒韵东. 轻度子宫内膜异位症诊断的研究进展[J]. 国际生殖健康/计划生育, 2022, 41(2): 151-155. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||