国际生殖健康/计划生育杂志 ›› 2023, Vol. 42 ›› Issue (5): 424-430.doi: 10.12280/gjszjk.20230190
收稿日期:
2023-05-09
出版日期:
2023-09-15
发布日期:
2023-09-13
通讯作者:
魏兆莲
E-mail:weizhaolian@ahmu.edu.cn
LIU Hong-jiang, JIANG Xiao-hua, WEI Zhao-lian()
Received:
2023-05-09
Published:
2023-09-15
Online:
2023-09-13
Contact:
WEI Zhao-lian
E-mail:weizhaolian@ahmu.edu.cn
摘要:
宫腔粘连(intrauterine adhesions,IUA)是导致女性不孕症的首要子宫性因素,目前的治疗措施难以改善内膜再生情况,且极易复发。间充质干细胞(mesenchymal stem cells,MSCs)被广泛应用于再生医学研究,其来源包括骨髓、脐带、羊膜、脂肪和经血等。许多研究证明不同来源的MSCs均可抑制子宫内膜纤维化、促进内膜损伤修复,提示MSCs可应用于治疗IUA的研究。其机制主要涉及MSCs的3种功能:旁分泌、免疫调节以及直接分化为子宫内膜细胞。但MSCs的体外存活率和利用率较低,且全身及局部单独使用MSCs均难以长期存留。生物材料支架可负载MSCs以构建原位递送系统,宫内灌注后可延长MSCs存留时间。目前常用的生物材料包括透明质酸、胶原蛋白、温敏性水凝胶及其他材料。部分生物材料支架还可以改善MSCs特性,增强其趋化和分泌能力,提高疗效。综述MSCs及其联合生物材料支架在IUA治疗的临床研究中的应用。
刘洪江, 姜小花, 魏兆莲. 间充质干细胞及其联合生物材料支架在宫腔粘连治疗中的应用[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 424-430.
LIU Hong-jiang, JIANG Xiao-hua, WEI Zhao-lian. The Application of Mesenchymal Stem Cells and Combined Biomaterial Scaffolds in the Treatment of Intrauterine Adhesions[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 424-430.
[1] |
Dreisler E, Kjer JJ. Asherman′s syndrome: current perspectives on diagnosis and management[J]. Int J Womens Health, 2019, 11:191-198. doi: 10.2147/IJWH.S165474.
doi: 10.2147/IJWH.S165474 pmid: 30936754 |
[2] |
Li B, Zhang L, Xie Y, et al. Evaluation of pharmacokinetics and safety of a long-term estradiol-releasing stent in rat uterine[J]. Regen Ther, 2022, 21:494-501. doi: 10.1016/j.reth.2022.10.001.
doi: 10.1016/j.reth.2022.10.001 pmid: 36313395 |
[3] |
Zhu R, Duan H, Gan L, et al. Comparison of Intrauterine Suitable Balloon and Foley Balloon in the Prevention of Adhesion after Hysteroscopic Adhesiolysis[J]. Biomed Res Int, 2018, 2018:9494101. doi: 10.1155/2018/9494101.
doi: 10.1155/2018/9494101 |
[4] |
Xin L, Lin X, Pan Y, et al. A collagen scaffold loaded with human umbilical cord-derived mesenchymal stem cells facilitates endometrial regeneration and restores fertility[J]. Acta Biomater, 2019, 92:160-171. doi: 10.1016/j.actbio.2019.05.012.
doi: S1742-7061(19)30327-7 pmid: 31075515 |
[5] |
Sahin Ersoy G, Zolbin MM, Cosar E, et al. CXCL12 Promotes Stem Cell Recruitment and Uterine Repair after Injury in Asherman′s Syndrome[J]. Mol Ther Methods Clin Dev, 2017, 4:169-177. doi: 10.1016/j.omtm.2017.01.001.
doi: 10.1016/j.omtm.2017.01.001 URL |
[6] |
Chen F, Gong Y, Jiang N, et al. Transplantation of bFGF-transfected bone mesenchymal stem cells on collagen scaffolds promotes the regeneration of injured rat endometrium[J]. Am J Transl Res, 2022, 14(9):6712-6725.
pmid: 36247308 |
[7] |
Meng X, Ichim TE, Zhong J, et al. Endometrial regenerative cells: a novel stem cell population[J]. J Transl Med, 2007, 5:57. doi: 10.1186/1479-5876-5-57.
doi: 10.1186/1479-5876-5-57 pmid: 18005405 |
[8] |
Zhang L, Li Y, Guan CY, et al. Therapeutic effect of human umbilical cord-derived mesenchymal stem cells on injured rat endometrium during its chronic phase[J]. Stem Cell Res Ther, 2018, 9(1):36. doi: 10.1186/s13287-018-0777-5.
doi: 10.1186/s13287-018-0777-5 pmid: 29433563 |
[9] |
Sun D, Jiang Z, Chen Y, et al. MiR-455-5p upregulation in umbilical cord mesenchymal stem cells attenuates endometrial injury and promotes repair of damaged endometrium via Janus kinase/signal transducer and activator of transcription 3 signaling[J]. Bioengineered, 2021, 12(2):12891-12904. doi: 10.1080/21655979.2021.2006976.
doi: 10.1080/21655979.2021.2006976 pmid: 34784837 |
[10] |
Huang J, Li Q, Yuan X, et al. Intrauterine infusion of clinically graded human umbilical cord-derived mesenchymal stem cells for the treatment of poor healing after uterine injury: a phase I clinical trial[J]. Stem Cell Res Ther, 2022, 13(1):85. doi: 10.1186/s13287-022-02756-9.
doi: 10.1186/s13287-022-02756-9 pmid: 35241151 |
[11] |
Gan L, Duan H, Xu Q, et al. Human amniotic mesenchymal stromal cell transplantation improves endometrial regeneration in rodent models of intrauterine adhesions[J]. Cytotherapy, 2017, 19(5):603-616. doi: 10.1016/j.jcyt.2017.02.003.
doi: S1465-3249(17)30061-0 pmid: 28285950 |
[12] |
Li JY, Ren KK, Zhang WJ, et al. Human amniotic mesenchymal stem cells and their paracrine factors promote wound healing by inhibiting heat stress-induced skin cell apoptosis and enhancing their proliferation through activating PI3K/AKT signaling pathway[J]. Stem Cell Res Ther, 2019, 10(1):247. doi: 10.1186/s13287-019-1366-y.
doi: 10.1186/s13287-019-1366-y |
[13] |
Navas A, Magaña-Guerrero FS, Domínguez-López A, et al. Anti-Inflammatory and Anti-Fibrotic Effects of Human Amniotic Membrane Mesenchymal Stem Cells and Their Potential in Corneal Repair[J]. Stem Cells Transl Med, 2018, 7(12):906-917. doi: 10.1002/sctm.18-0042.
doi: 10.1002/sctm.18-0042 URL |
[14] |
Ding C, Li H, Wang Y, et al. Different therapeutic effects of cells derived from human amniotic membrane on premature ovarian aging depend on distinct cellular biological characteristics[J]. Stem Cell Res Ther, 2017, 8(1):173. doi: 10.1186/s13287-017-0613-3.
doi: 10.1186/s13287-017-0613-3 pmid: 28750654 |
[15] |
Yang PJ, Yuan WX, Liu J, et al. Biological characterization of human amniotic epithelial cells in a serum-free system and their safety evaluation[J]. Acta Pharmacol Sin, 2018, 39(8):1305-1316. doi: 10.1038/aps.2018.22.
doi: 10.1038/aps.2018.22 URL |
[16] |
Li B, Zhang Q, Sun J, et al. Human amniotic epithelial cells improve fertility in an intrauterine adhesion mouse model[J]. Stem Cell Res Ther, 2019, 10(1):257. doi: 10.1186/s13287-019-1368-9.
doi: 10.1186/s13287-019-1368-9 pmid: 31412924 |
[17] |
Perlee D, de Vos AF, Scicluna BP, et al. Role of tissue factor in the procoagulant and antibacterial effects of human adipose-derived mesenchymal stem cells during pneumosepsis in mice[J]. Stem Cell Res Ther, 2019, 10(1):286. doi: 10.1186/s13287-019-1391-x.
doi: 10.1186/s13287-019-1391-x pmid: 31547876 |
[18] |
Lee SY, Shin JE, Kwon H, et al. Effect of Autologous Adipose-Derived Stromal Vascular Fraction Transplantation on Endometrial Regeneration in Patients of Asherman′s Syndrome: a Pilot Study[J]. Reprod Sci, 2020, 27(2):561-568. doi: 10.1007/s43032-019-00055-y.
doi: 10.1007/s43032-019-00055-y |
[19] |
Zhang S, Li P, Yuan Z, et al. Platelet-rich plasma improves therapeutic effects of menstrual blood-derived stromal cells in rat model of intrauterine adhesion[J]. Stem Cell Res Ther, 2019, 10(1):61. doi: 10.1186/s13287-019-1155-7.
doi: 10.1186/s13287-019-1155-7 pmid: 30770774 |
[20] |
Tan J, Li P, Wang Q, et al. Autologous menstrual blood-derived stromal cells transplantation for severe Asherman′s syndrome[J]. Hum Reprod, 2016, 31(12):2723-2729. doi: 10.1093/humrep/dew235.
doi: 10.1093/humrep/dew235 URL |
[21] |
Chang QY, Zhang SW, Li PP, et al. Safety of menstrual blood-derived stromal cell transplantation in treatment of intrauterine adhesion[J]. World J Stem Cells, 2020, 12(5):368-380. doi: 10.4252/wjsc.v12.i5.368.
doi: 10.4252/wjsc.v12.i5.368 URL |
[22] |
Yao Y, Chen R, Wang G, et al. Exosomes derived from mesenchymal stem cells reverse EMT via TGF-β1/Smad pathway and promote repair of damaged endometrium[J]. Stem Cell Res Ther, 2019, 10(1):225. doi: 10.1186/s13287-019-1332-8.
doi: 10.1186/s13287-019-1332-8 pmid: 31358049 |
[23] |
Zhao S, Qi W, Zheng J, et al. Exosomes Derived from Adipose Mesenchymal Stem Cells Restore Functional Endometrium in a Rat Model of Intrauterine Adhesions[J]. Reprod Sci, 2020, 27(6):1266-1275. doi: 10.1007/s43032-019-00112-6.
doi: 10.1007/s43032-019-00112-6 pmid: 31933162 |
[24] |
Tan Q, Xia D, Ying X. miR-29a in Exosomes from Bone Marrow Mesenchymal Stem Cells Inhibit Fibrosis during Endometrial Repair of Intrauterine Adhesion[J]. Int J Stem Cells, 2020, 13(3):414-423. doi: 10.15283/ijsc20049.
doi: 10.15283/ijsc20049 pmid: 33250449 |
[25] |
Xiao B, Zhu Y, Huang J, et al. Exosomal transfer of bone marrow mesenchymal stem cell-derived miR-340 attenuates endometrial fibrosis[J]. Biol Open, 2019, 8(5):bio039958. doi: 10.1242/bio.039958.
doi: 10.1242/bio.039958 |
[26] |
Wang L, Yu C, Chang T, et al. In situ repair abilities of human umbilical cord-derived mesenchymal stem cells and autocrosslinked hyaluronic acid gel complex in rhesus monkeys with intrauterine adhesion[J]. Sci Adv, 2020, 6(21):eaba6357. doi: 10.1126/sciadv.aba6357.
doi: 10.1126/sciadv.aba6357 URL |
[27] |
Chen L, Guo L, Chen F, et al. Transplantation of menstrual blood-derived mesenchymal stem cells (MbMSCs) promotes the regeneration of mechanical injuried endometrium[J]. Am J Transl Res, 2020, 12(9):4941-4954.
pmid: 33042399 |
[28] |
Xin L, Lin X, Zhou F, et al. A scaffold laden with mesenchymal stem cell-derived exosomes for promoting endometrium regeneration and fertility restoration through macrophage immunomodulation[J]. Acta Biomater, 2020, 113:252-266. doi: 10.1016/j.actbio.2020.06.029.
doi: S1742-7061(20)30359-7 pmid: 32574858 |
[29] |
Zheng JH, Zhang JK, Kong DS, et al. Quantification of the CM-Dil-labeled human umbilical cord mesenchymal stem cells migrated to the dual injured uterus in SD rat[J]. Stem Cell Res Ther, 2020, 11(1):280. doi: 10.1186/s13287-020-01806-4.
doi: 10.1186/s13287-020-01806-4 |
[30] |
Yu J, Zhang W, Huang J, et al. Management of intrauterine adhesions using human amniotic mesenchymal stromal cells to promote endometrial regeneration and repair through Notch signalling[J]. J Cell Mol Med, 2021, 25(23):11002-11015. doi: 10.1111/jcmm.17023.
doi: 10.1111/jcmm.17023 pmid: 34724320 |
[31] |
Ong YR, Cousins FL, Yang X, et al. Bone Marrow Stem Cells Do Not Contribute to Endometrial Cell Lineages in Chimeric Mouse Models[J]. Stem Cells, 2018, 36(1):91-102. doi: 10.1002/stem.2706.
doi: 10.1002/stem.2706 pmid: 28913973 |
[32] |
Liu F, Hu S, Yang H, et al. Hyaluronic Acid Hydrogel Integrated with Mesenchymal Stem Cell-Secretome to Treat Endometrial Injury in a Rat Model of Asherman′s Syndrome[J]. Adv Healthc Mater, 2019, 8(14):e1900411. doi: 10.1002/adhm.201900411.
doi: 10.1002/adhm.201900411 |
[33] |
Corradetti B, Taraballi F, Martinez JO, et al. Hyaluronic acid coatings as a simple and efficient approach to improve MSC homing toward the site of inflammation[J]. Sci Rep, 2017, 7(1):7991. doi: 10.1038/s41598-017-08687-3.
doi: 10.1038/s41598-017-08687-3 pmid: 28801676 |
[34] |
Zhao M, Gao X, Wei J, et al. Chondrogenic differentiation of mesenchymal stem cells through cartilage matrix-inspired surface coatings[J]. Front Bioeng Biotechnol, 2022, 10:991855. doi: 10.3389/fbioe.2022.991855.
doi: 10.3389/fbioe.2022.991855 URL |
[35] |
Su N, Jiang LY, Wang X, et al. Membrane-Binding Adhesive Particulates Enhance the Viability and Paracrine Function of Mesenchymal Cells for Cell-Based Therapy[J]. Biomacromolecules, 2019, 20(2):1007-1017. doi: 10.1021/acs.biomac.8b01624.
doi: 10.1021/acs.biomac.8b01624 pmid: 30616345 |
[36] |
Zhang Y, Shi L, Lin X, et al. Unresponsive thin endometrium caused by Asherman syndrome treated with umbilical cord mesenchymal stem cells on collagen scaffolds: a pilot study[J]. Stem Cell Res Ther, 2021, 12(1):420. doi: 10.1186/s13287-021-02499-z.
doi: 10.1186/s13287-021-02499-z pmid: 34294152 |
[37] |
Cao Y, Sun H, Zhu H, et al. Allogeneic cell therapy using umbilical cord MSCs on collagen scaffolds for patients with recurrent uterine adhesion: a phase I clinical trial[J]. Stem Cell Res Ther, 2018, 9(1):192. doi: 10.1186/s13287-018-0904-3.
doi: 10.1186/s13287-018-0904-3 pmid: 29996892 |
[38] |
Zhao G, Cao Y, Zhu X, et al. Transplantation of collagen scaffold with autologous bone marrow mononuclear cells promotes functional endometrium reconstruction via downregulating ΔNp63 expression in Asherman′s syndrome[J]. Sci China Life Sci, 2017, 60(4):404-416. doi: 10.1007/s11427-016-0328-y.
doi: 10.1007/s11427-016-0328-y URL |
[39] |
Feng M, Hu S, Qin W, et al. Bioprinting of a Blue Light-Cross-Linked Biodegradable Hydrogel Encapsulating Amniotic Mesenchymal Stem Cells for Intrauterine Adhesion Prevention[J]. ACS Omega, 2021, 6(36):23067-23075. doi: 10.1021/acsomega.1c02117.
doi: 10.1021/acsomega.1c02117 pmid: 34549107 |
[40] |
Liu T, Li J, Shao Z, et al. Encapsulation of mesenchymal stem cells in chitosan/β-glycerophosphate hydrogel for seeding on a novel calcium phosphate cement scaffold[J]. Med Eng Phys, 2018, 56:9-15. doi: 10.1016/j.medengphy.2018.03.003.
doi: S1350-4533(18)30045-6 pmid: 29576458 |
[41] |
He W, Zhu X, Xin A, et al. Long-term maintenance of human endometrial epithelial stem cells and their therapeutic effects on intrauterine adhesion[J]. Cell Biosci, 2022, 12(1):175. doi: 10.1186/s13578-022-00905-4.
doi: 10.1186/s13578-022-00905-4 pmid: 36258228 |
[42] |
Zhou S, Lei Y, Wang P, et al. Human Umbilical Cord Mesenchymal Stem Cells Encapsulated with Pluronic F-127 Enhance the Regeneration and Angiogenesis of Thin Endometrium in Rat via Local IL-1β Stimulation[J]. Stem Cells Int, 2022, 2022:7819234. doi: 10.1155/2022/7819234.
doi: 10.1155/2022/7819234 |
[43] |
Rangasami VK, Nawale G, Asawa K, et al. Pluronic Micelle-Mediated Tissue Factor Silencing Enhances Hemocompatibility, Stemness, Differentiation Potential, and Paracrine Signaling of Mesenchymal Stem Cells[J]. Biomacromolecules, 2021, 22(5):1980-1989. doi: 10.1021/acs.biomac.1c00070.
doi: 10.1021/acs.biomac.1c00070 pmid: 33813822 |
[44] |
Huang J, Zhang W, Yu J, et al. Human amniotic mesenchymal stem cells combined with PPCNg facilitate injured endometrial regeneration[J]. Stem Cell Res Ther, 2022, 13(1):17. doi: 10.1186/s13287-021-02682-2.
doi: 10.1186/s13287-021-02682-2 pmid: 35022063 |
[45] |
Mi HY, Jing X, Napiwocki BN, et al. Biocompatible, degradable thermoplastic polyurethane based on polycaprolactone-block-polytetrahydrofuran-block-polycaprolactone copolymers for soft tissue engineering[J]. J Mater Chem B, 2017, 5(22):4137-4151. doi: 10.1039/C7TB00419B.
doi: 10.1039/C7TB00419B URL |
[46] |
Xiao B, Yang W, Lei D, et al. PGS Scaffolds Promote the In Vivo Survival and Directional Differentiation of Bone Marrow Mesenchymal Stem Cells Restoring the Morphology and Function of Wounded Rat Uterus[J]. Adv Healthc Mater, 2019, 8(5):e1801455. doi: 10.1002/adhm.201801455.
doi: 10.1002/adhm.201801455 |
[47] |
Ogle ME, Doron G, Levy MJ, et al. Hydrogel Culture Surface Stiffness Modulates Mesenchymal Stromal Cell Secretome and Alters Senescence[J]. Tissue Eng Part A, 2020, 26(23/24):1259-1271. doi: 10.1089/ten.tea.2020.0030.
doi: 10.1089/ten.tea.2020.0030 URL |
[48] |
Hao X, Zhang S, Li P, et al. Amniotic membrane extract-enriched hydrogel augments the therapeutic effect of menstrual blood-derived stromal cells in a rat model of intrauterine adhesion[J]. Biomater Adv, 2022, 142:213165. doi: 10.1016/j.bioadv.2022.213165.
doi: 10.1016/j.bioadv.2022.213165 URL |
[1] | 许阡, 成九梅, 安圆圆. 外阴平滑肌瘤8例临床分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 467-470. |
[2] | 张丹莉, 石雪冬, 李建磊, 周立飞, 王文艺, 张萍萍, 李亚丽. KMT2D基因新发变异致歌舞伎面谱综合征一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 471-474. |
[3] | 刘思敏, 王佳丽, 张世霞, 魏佳, 杨永秀. 外阴隆突性皮肤纤维肉瘤一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 490-493. |
[4] | 田德吉尔, 冯晓玲. 肌肉肌醇与D-手性肌醇在多囊卵巢综合征中的研究及应用[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 512-517. |
[5] | 许阡, 成九梅. 宫颈脂肪平滑肌瘤17例临床分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 390-394. |
[6] | 饶慧, 卢娇兰, 周欢, 李雄. 子宫内膜中肾样腺癌累及宫颈管间质一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 410-414. |
[7] | 徐晓燕, 王笑璇. 卵巢妊娠破裂三例诊疗体会[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 309-312. |
[8] | 李丹萍, 连方, 相珊. 二甲双胍治疗多囊卵巢综合征的机制研究新进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 343-347. |
[9] | 王晶, 王晓慧. 子宫内膜小细胞神经内分泌癌一例并文献复习[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 212-215. |
[10] | 石百超, 常惠, 王宇, 卢凤娟, 王凯悦, 关木馨, 马良, 吴效科. 肠道菌群在多囊卵巢综合征中的作用机制[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 238-242. |
[11] | 王芳, 万桃, 杨永秀. 2型糖尿病相关子宫内膜癌与肠道菌群相关性的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 249-253. |
[12] | 李彦林, 何银芳. 产科抗磷脂综合征诊治现状[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 254-259. |
[13] | 程诗语, 石洁, 李艳丽, 高晗. 外阴硬化性苔藓的临床研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 260-264. |
[14] | 区晓榆, 曾宇华, 陈燕芬, 谢琳玲, 曾蕾, 卢如玲. MRKH综合征合并卵巢恶性肿瘤一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 121-126. |
[15] | 李婷婷, 谭小方, 施蔚虹. 辅助生殖技术助孕后三胎合并双胎反向动脉灌注序列征一例并文献复习[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 24-27. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||