国际生殖健康/计划生育杂志 ›› 2023, Vol. 42 ›› Issue (5): 419-423.doi: 10.12280/gjszjk.20230099
收稿日期:
2023-03-06
出版日期:
2023-09-15
发布日期:
2023-09-13
通讯作者:
吴效科
E-mail:xiaokewu2002@vip.sina.com
基金资助:
ZHU Meng-yi, GAO Jing-shu, WANG Yu, FENG Jia-xing, ZHANG Bei, WU Xiao-ke()
Received:
2023-03-06
Published:
2023-09-15
Online:
2023-09-13
Contact:
WU Xiao-ke
E-mail:xiaokewu2002@vip.sina.com
摘要:
生长分化因子15(growth differentiation factor 15,GDF15)是转化生长因子-β(transforming growth factor-β,TGF-β)超家族的一员,在胎盘组织中呈特异性高表达,且GDF15表达水平随着孕周增大逐渐升高。研究显示,妊娠各阶段GDF15水平的异常与多种不良妊娠结局有关,妊娠早期GDF15水平过低与自然流产有关,GDF15过高则可使妊娠恶心呕吐和妊娠剧吐的发生风险升高;妊娠中、晚期GDF15水平异常则与妊娠期高血压疾病、妊娠期糖尿病和妊娠期贫血等代谢相关疾病关系密切。综述近年GDF15与不良妊娠结局的相关研究进展。
朱梦一, 高敬书, 王宇, 冯佳兴, 张蓓, 吴效科. 生长分化因子15与不良妊娠结局的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 419-423.
ZHU Meng-yi, GAO Jing-shu, WANG Yu, FENG Jia-xing, ZHANG Bei, WU Xiao-ke. Research Progress of Growth Differentiation Factor 15 and Adverse Pregnancy Outcomes[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 419-423.
[1] |
Breit SN, Brown DA, Tsai VW. The GDF15-GFRAL Pathway in Health and Metabolic Disease: Friend or Foe?[J]. Annu Rev Physiol, 2021, 83:127-151. doi: 10.1146/annurev-physiol-022020-045449.
doi: 10.1146/annurev-physiol-022020-045449 pmid: 33228454 |
[2] |
Andersson-Hall U, Svedin P, Mallard C, et al. Growth differentiation factor 15 increases in both cerebrospinal fluid and serum during pregnancy[J]. PLoS One, 2021, 16(5):e0248980. doi: 10.1371/journal.pone.0248980.
doi: 10.1371/journal.pone.0248980 URL |
[3] |
Tong S, Ngian GL, Onwude JL, et al. Diagnostic accuracy of maternal serum macrophage inhibitory cytokine-1 and pregnancy-associated plasma protein-A at 6-10 weeks of gestation to predict miscarriage[J]. Obstet Gynecol, 2012, 119(5):1000-1008. doi: 10.1097/AOG.0b013e3182518fd3.
doi: 10.1097/AOG.0b013e3182518fd3 pmid: 22525911 |
[4] |
Iglesias P, Silvestre RA, Díez JJ. Growth differentiation factor 15 (GDF-15) in endocrinology[J]. Endocrine, 2023, 81(3):419-431. doi: 10.1007/s12020-023-03377-9.
doi: 10.1007/s12020-023-03377-9 pmid: 37129758 |
[5] |
Wan Y, Fu J. GDF15 as a key disease target and biomarker: linking chronic lung diseases and ageing[J]. Mol Cell Biochem, 2023 Apr 24; 1-14. doi: 10.1007/s11010-023-04743-x.
doi: 10.1007/s11010-023-04743-x |
[6] |
Assadi A, Zahabi A, Hart RA. GDF15, an update of the physiological and pathological roles it plays: a review[J]. Pflugers Arch, 2020, 472(11):1535-1546. doi: 10.1007/s00424-020-02459-1.
doi: 10.1007/s00424-020-02459-1 |
[7] |
Yang SL, Tan HX, Lai ZZ, et al. An active glutamine/α-ketoglutarate/HIF-1α axis prevents pregnancy loss by triggering decidual IGF1+GDF15+NK cell differentiation[J]. Cell Mol Life Sci, 2022, 79(12):611. doi: 10.1007/s00018-022-04639-x.
doi: 10.1007/s00018-022-04639-x |
[8] |
Welsh P, Kimenai DM, Marioni RE, et al. Reference ranges for GDF-15, and risk factors associated with GDF-15, in a large general population cohort[J]. Clin Chem Lab Med, 2022, 60(11):1820-1829. doi: 10.1515/cclm-2022-0135.
doi: 10.1515/cclm-2022-0135 pmid: 35976089 |
[9] |
Wertaschnigg D, Rolnik DL, Nie G, et al. Second- and third-trimester serum levels of growth-differentiation factor-15 in prediction of pre-eclampsia[J]. Ultrasound Obstet Gynecol, 2020, 56(6):879-884. doi: 10.1002/uog.22070.
doi: 10.1002/uog.22070 URL |
[10] |
Wischhusen J, Melero I, Fridman WH. Growth/Differentiation Factor-15 (GDF-15): From Biomarker to Novel Targetable Immune Checkpoint[J]. Front Immunol, 2020, 11:951. doi: 10.3389/fimmu.2020.00951.
doi: 10.3389/fimmu.2020.00951 pmid: 32508832 |
[11] |
Koren G, Cohen R. Measuring the severity of nausea and vomiting of pregnancy; a 20-year perspective on the use of the pregnancy-unique quantification of emesis (PUQE)[J]. J Obstet Gynaecol, 2021, 41(3):335-339. doi: 10.1080/01443615.2020.1787968.
doi: 10.1080/01443615.2020.1787968 URL |
[12] |
Fejzo MS, Ingles SA, Wilson M. High prevalence of severe nausea and vomiting of pregnancy and hyperemesis gravidarum among relatives of affected individuals[J]. Eur J Obstet Gynecol Reprod Biol, 2008, 141(1):13-17. doi: 10.1016/j.ejogrb.2008.07.003.
doi: 10.1016/j.ejogrb.2008.07.003 pmid: 18752885 |
[13] |
London V, Grube S, Sherer DM, et al. Hyperemesis Gravidarum: A Review of Recent Literature[J]. Pharmacology, 2017, 100(3/4):161-171. doi: 10.1159/000477853.
doi: 10.1159/000477853 URL |
[14] |
Fejzo MS, Fasching PA, Schneider MO, et al. Analysis of GDF15 and IGFBP7 in Hyperemesis Gravidarum Support Causality[J]. Geburtshilfe Frauenheilkd, 2019, 79(4):382-388. doi: 10.1055/a-0830-1346.
doi: 10.1055/a-0830-1346 URL |
[15] |
Fejzo MS, MacGibbon KW, First O, et al. Whole-exome sequencing uncovers new variants in GDF15 associated with hyperemesis gravidarum[J]. BJOG, 2022, 129(11):1845-1852. doi: 10.1111/1471-0528.17129.
doi: 10.1111/1471-0528.17129 URL |
[16] |
Fejzo MS, Arzy D, Tian R, et al. Evidence GDF15 Plays a Role in Familial and Recurrent Hyperemesis Gravidarum[J]. Geburtshilfe Frauenheilkd, 2018, 78(9):866-870. doi: 10.1055/a-0661-0287.
doi: 10.1055/a-0661-0287 URL |
[17] |
Quenby S, Gallos ID, Dhillon-Smith RK, et al. Miscarriage matters: the epidemiological, physical, psychological, and economic costs of early pregnancy loss[J]. Lancet, 2021, 397(10285):1658-1667. doi: 10.1016/S0140-6736(21)00682-6.
doi: 10.1016/S0140-6736(21)00682-6 pmid: 33915094 |
[18] |
Farren J, Jalmbrant M, Falconieri N, et al. Posttraumatic stress, anxiety and depression following miscarriage and ectopic pregnancy: a multicenter, prospective, cohort study[J]. Am J Obstet Gynecol, 2020, 222(4):367.e1-e22. doi: 10.1016/j.ajog.2019.10.102.
doi: 10.1016/j.ajog.2019.10.102 |
[19] |
Tong S, Marjono B, Brown DA, et al. Serum concentrations of macrophage inhibitory cytokine 1 (MIC 1) as a predictor of miscarriage[J]. Lancet, 2004, 363(9403):129-130. doi: 10.1016/S0140-6736(03)15265-8.
doi: 10.1016/S0140-6736(03)15265-8 pmid: 14726168 |
[20] |
Lu H, Yang HL, Zhou WJ, et al. Rapamycin prevents spontaneous abortion by triggering decidual stromal cell autophagy-mediated NK cell residence[J]. Autophagy, 2021, 17(9):2511-2527. doi: 10.1080/15548627.2020.1833515.
doi: 10.1080/15548627.2020.1833515 URL |
[21] |
Jena SR, Nayak J, Kumar S, et al. Comparative proteome profiling of seminal components reveal impaired immune cell signalling as paternal contributors in recurrent pregnancy loss patients[J]. Am J Reprod Immunol, 2023, 89(2):e13613. doi: 10.1111/aji.13613.
doi: 10.1111/aji.13613 URL |
[22] |
Khan KS, Wojdyla D, Say L, et al. WHO analysis of causes of maternal death: a systematic review[J]. Lancet, 2006, 367(9516):1066-1074. doi: 10.1016/S0140-6736(06)68397-9.
doi: S0140-6736(06)68397-9 pmid: 16581405 |
[23] |
Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin Summary, Number 222[J]. Obstet Gynecol, 2020, 135(6):1492-1495. doi: 10.1097/AOG.0000000000003892.
doi: 10.1097/AOG.0000000000003892 pmid: 32443077 |
[24] |
Yarsilikal Guleroglu F, Selvi E, Turan Bakirci I, et al. Clinical Value of Serum BMP-4, BMP-2, GDF-15, MMP-9, GP39 Levels in Pregnant Women with Obesity and the Related Comorbidities Diabetes Mellitus and Gestational Hypertension[J]. Z Geburtshilfe Neonatol, 2023, 227(1):42-50. doi: 10.1055/a-1937-1155.
doi: 10.1055/a-1937-1155 URL |
[25] |
Jacobsen DP, Røysland R, Strand H, et al. Circulating cardiovascular biomarkers during and after preeclampsia: Crosstalk with placental function?[J]. Pregnancy Hypertens, 2022, 30:103-109. doi: 10.1016/j.preghy.2022.09.003.
doi: 10.1016/j.preghy.2022.09.003 pmid: 36148698 |
[26] |
Chen Q, Wang Y, Zhao M, et al. Serum levels of GDF15 are reduced in preeclampsia and the reduction is more profound in late-onset than early-onset cases[J]. Cytokine, 2016, 83:226-230. doi: 10.1016/j.cyto.2016.05.002.
doi: S1043-4666(16)30084-9 pmid: 27173615 |
[27] |
Wang L, Yang Q. Circulating Growth Differentiation Factor 15 and Preeclampsia: A Meta-Analysis[J]. Horm Metab Res, 2023, 55(2):114-123. doi: 10.1055/a-1956-2961.
doi: 10.1055/a-1956-2961 URL |
[28] |
Modzelewski R, Stefanowicz-Rutkowska MM, Matuszewski W, et al. Gestational Diabetes Mellitus-Recent Literature Review[J]. J Clin Med, 2022, 11(19):5736. doi: 10.3390/jcm11195736.
doi: 10.3390/jcm11195736 URL |
[29] |
Zhu H, Zhao Z, Xu J, et al. The prevalence of gestational diabetes mellitus before and after the implementation of the universal two-child policy in China[J]. Front Endocrinol(Lausanne), 2022, 13:960877. doi: 10.3389/fendo.2022.960877.
doi: 10.3389/fendo.2022.960877 |
[30] |
Ye W, Luo C, Huang J, et al. Gestational diabetes mellitus and adverse pregnancy outcomes: systematic review and meta-analysis[J]. BMJ, 2022, 377:e067946. doi: 10.1136/bmj-2021-067946.
doi: 10.1136/bmj-2021-067946 |
[31] |
Li E, Chen P, Lu J, et al. Serum growth differentiation factor 15 is closely associated with metabolic abnormalities in Chinese pregnant women[J]. J Diabetes Investig, 2021, 12(8):1501-1507. doi: 10.1111/jdi.13488.
doi: 10.1111/jdi.13488 URL |
[32] |
Lu YC, Liu SL, Zhang YS, et al. Association between growth differentiation factor 15 levels and gestational diabetes mellitus: A combined analysis[J]. Front Endocrinol(Lausanne), 2023, 14:1084896. doi: 10.3389/fendo.2023.1084896.
doi: 10.3389/fendo.2023.1084896 |
[33] |
Li T, Hu D, Gong Y. Identification of potential lncRNAs and co-expressed mRNAs in gestational diabetes mellitus by RNA sequencing[J]. J Matern Fetal Neonatal Med, 2022, 35(25):5125-5139. doi: 10.1080/14767058.2021.1875432.
doi: 10.1080/14767058.2021.1875432 URL |
[34] |
Aguilar-Recarte D, Barroso E, Gumà A, et al. GDF15 mediates the metabolic effects of PPARβ/δ by activating AMPK[J]. Cell Rep, 2021, 36(6):109501. doi: 10.1016/j.celrep.2021.109501.
doi: 10.1016/j.celrep.2021.109501 URL |
[35] |
Coll AP, Chen M, Taskar P, et al. GDF15 mediates the effects of metformin on body weight and energy balance[J]. Nature, 2020, 578(7795):444-448. doi: 10.1038/s41586-019-1911-y.
doi: 10.1038/s41586-019-1911-y |
[36] |
Ranjbaran R, Abbasi M, Rahimian E, et al. GDF-15 negatively regulates excess erythropoiesis and its overexpression is involved in erythroid hyperplasia[J]. Exp Cell Res, 2020, 397(2):112346. doi: 10.1016/j.yexcr.2020.112346.
doi: 10.1016/j.yexcr.2020.112346 URL |
[37] |
Santhakumar S, Athiyarath R, Cherian AG, et al. Impact of maternal iron deficiency anemia on fetal iron status and placental iron transporters in human pregnancy[J]. Blood Cells Mol Dis, 2023, 99:102727. doi: 10.1016/j.bcmd.2023.102727.
doi: 10.1016/j.bcmd.2023.102727 URL |
[38] |
Rochette L, Dogon G, Zeller M, et al. GDF15 and Cardiac Cells: Current Concepts and New Insights[J]. Int J Mol Sci, 2021, 22(16):8889. doi: 10.3390/ijms22168889.
doi: 10.3390/ijms22168889 URL |
[39] |
Almudares F, Hagan J, Chen X, et al. Growth and differentiation factor 15 (GDF15) levels predict adverse respiratory outcomes in premature neonates[J]. Pediatr Pulmonol, 2023, 58(1):271-278. doi: 10.1002/ppul.26197.
doi: 10.1002/ppul.26197 URL |
[40] |
Kinoshita M, Yatsuga S, Iwata O, et al. Temporal changes and control variables of growth differentiation factor 15 levels during the first week of life in hospitalised newborn infants[J]. Mitochondrion, 2021, 61:25-30. doi: 10.1016/j.mito.2021.09.002.
doi: 10.1016/j.mito.2021.09.002 pmid: 34508892 |
[1] | 王嘉怡, 季慧, 李欣, 凌秀凤. 拮抗剂方案双扳机次日血清β-hCG水平对新鲜胚胎移植结局的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 447-452. |
[2] | 王钥, 唐岑, 李亚锦, 胡万芹. 未分化结缔组织病患者发生不良妊娠结局的影响因素及列线图预测模型的构建[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 453-457. |
[3] | 高晓丽, 苏婧, 李增彦, 李洁. 14例妊娠相关溶血尿毒症综合征临床分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 458-461. |
[4] | 罗莎莎, 王德婧. 冻融胚胎移植妊娠结局相关影响因素分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 420-424. |
[5] | 谢娱新, 王瑞雪, 陈梦娜, 储继军. 膜联蛋白A家族在母胎界面及不良妊娠中的作用[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 430-434. |
[6] | 吴宇轩, 孟子凡, 董丽, 季慧. 宫腔镜子宫内膜息肉手术后冻融胚胎移植时机对妊娠结局的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 274-278. |
[7] | 赵安琪, 刘霖, 谭小方. HPV经精子传播及其对早期胚胎发育的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 328-331. |
[8] | 柳芳蕾, 冯晓玲. 甲状腺相关激素与子痫前期的相关性[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 348-352. |
[9] | 李宁, 张安妮, 何晓霞, 张学红. 冻融胚胎移植后妊娠期高血压疾病发生的列线图预测模型构建[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 177-184. |
[10] | 王洁, 马翔. 尿酸与女性生殖系统疾病及妊娠结局的相关性[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 63-67. |
[11] | 李彩华, 郭培培, 姜小花, 方有燕, 周平, 魏兆莲. 卵泡期高孕激素状态下促排卵方案的应用进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 68-73. |
[12] | 陈寅, 王菁, 冒韵东. 子宫内膜异位症合并不孕患者的控制性卵巢刺激方案研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 398-402. |
[13] | 李宁, 张安妮, 张学红. 自体外周血单个核细胞治疗不明原因反复种植失败的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 403-408. |
[14] | 宋秋瑾, 钱晓红, 陈骞. 肠道菌群与妊娠并发症相关性的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 409-413. |
[15] | 何玥, 崔红梅. 铁死亡在产科疾病中的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 414-418. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||