国际生殖健康/计划生育杂志 ›› 2023, Vol. 42 ›› Issue (4): 304-309.doi: 10.12280/gjszjk.20230082
收稿日期:
2023-02-23
出版日期:
2023-07-15
发布日期:
2023-07-26
通讯作者:
石一柱,冯兰青
E-mail:53232748@qq.com
基金资助:
DENG Mei-xiang, SHI Yi-zhu, FENG Lan-qing()
Received:
2023-02-23
Published:
2023-07-15
Online:
2023-07-26
Contact:
SHI Yi-zhu,FENG Lan-qing
E-mail:53232748@qq.com
摘要:
内分泌干扰物(endocrine disrupting chemicals,EDC)是外源性化合物,能干扰激素的作用并影响内分泌途径,影响女性生殖系统发育和卵巢功能,且与不孕症的发生相关。目前研究方向多集中在EDC的暴露及其与不同内分泌轴上疾病的相关性方面,研究表明EDC所致的卵巢功能减退、卵泡发育异常、子宫内膜容受性降低、胚胎质量下降会影响女性的生育能力,并进一步影响不孕女性的辅助生殖临床结局。此外,在动物研究中积累的证据为EDC的效应机制提供了重要的见解。根据目前的研究数据总结分析一些最常见的EDC,包括农药、双酚A和邻苯二甲酸盐对女性生育能力和辅助生殖技术的影响。
邓美香, 石一柱, 冯兰青. 内分泌干扰物对女性生育力和辅助生殖技术结局的影响[J]. 国际生殖健康/计划生育杂志, 2023, 42(4): 304-309.
DENG Mei-xiang, SHI Yi-zhu, FENG Lan-qing. The Effects of Endocrine Disrupting Chemicals on Female Fertility and Outcomes of Assisted Reproductive Technolog[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 304-309.
[1] |
Ghosh A, Tripathy A, Ghosh D. Impact of Endocrine Disrupting Chemicals (EDCs) on Reproductive Health of Human[J]. Proceedings of the Zoological Society, 2022, 75(1):16-30. doi: 10.1007/s12595-021-00412-3.
doi: 10.1007/s12595-021-00412-3 |
[2] |
Green MP, Harvey AJ, Finger BJ, et al. Endocrine disrupting chemicals: Impacts on human fertility and fecundity during the peri-conception period[J]. Environ Res, 2021, 194:110694. doi: 10.1016/j.envres.2020.110694.
doi: 10.1016/j.envres.2020.110694 URL |
[3] |
Arya S, Dwivedi AK, Alvarado L, et al. Exposure of U.S. population to endocrine disruptive chemicals (Parabens, Benzophenone-3, Bisphenol-A and Triclosan) and their associations with female infertility[J]. Environ Pollut, 2020, 265(Pt A):114763. doi: 10.1016/j.envpol.2020.114763.
doi: 10.1016/j.envpol.2020.114763 |
[4] |
Segal TR, Giudice LC. Before the beginning: environmental exposures and reproductive and obstetrical outcomes[J]. Fertil Steril, 2019, 112(4):613-621. doi: 10.1016/j.fertnstert.2019.08.001.
doi: S0015-0282(19)31989-2 pmid: 31561863 |
[5] |
Liu Y, He QK, Xu ZR, et al. Thiamethoxam Exposure Induces Endoplasmic Reticulum Stress and Affects Ovarian Function and Oocyte Development in Mice[J]. J Agric Food Chem, 2021, 69(6):1942-1952. doi: 10.1021/acs.jafc.0c06340.
doi: 10.1021/acs.jafc.0c06340 URL |
[6] |
Song J, Ma X, Li F, et al. Exposure to multiple pyrethroid insecticides affects ovarian follicular development via modifying microRNA expression[J]. Sci Total Environ, 2022, 828:154384. doi: 10.1016/j.scitotenv.2022.154384.
doi: 10.1016/j.scitotenv.2022.154384 URL |
[7] |
Zhang Y, Ji L, Hu Y, et al. Exposure to Organophosphate Pesticides and Menstrual Cycle Characteristics in Chinese Preconceptional Women[J]. Am J Epidemiol, 2020, 189(5):375-383. doi: 10.1093/aje/kwz242.
doi: 10.1093/aje/kwz242 pmid: 31845721 |
[8] |
Wu Y, Weng X, Liu S, et al. Associations of single and multiple organophosphate pesticide exposure with female infertility in the USA: data from the 2015-2018 National Health and Nutrition Examination Survey[J]. Environ Sci Pollut Res Int, 2023, 30(9):23411-23421. doi: 10.1007/s11356-022-23624-2.
doi: 10.1007/s11356-022-23624-2 |
[9] |
Björvang RD, Hallberg I, Pikki A, et al. Follicular fluid and blood levels of persistent organic pollutants and reproductive outcomes among women undergoing assisted reproductive technologies[J]. Environ Res, 2022, 208:112626. doi: 10.1016/j.envres.2021.112626.
doi: 10.1016/j.envres.2021.112626 URL |
[10] |
Hu P, Vinturache A, Li H, et al. Urinary Organophosphate Metabolite Concentrations and Pregnancy Outcomes among Women Conceiving through in Vitro Fertilization in Shanghai, China[J]. Environ Health Perspect, 2020, 128(9):97007. doi: 10.1289/EHP7076.
doi: 10.1289/EHP7076 URL |
[11] |
Chiu YH, Williams PL, Gillman MW, et al. Association Between Pesticide Residue Intake From Consumption of Fruits and Vegetables and Pregnancy Outcomes Among Women Undergoing Infertility Treatment With Assisted Reproductive Technology[J]. JAMA Intern Med, 2018, 178(1):17-26. doi: 10.1001/jamainternmed.2017.5038.
doi: 10.1001/jamainternmed.2017.5038 URL |
[12] | Al-Saleh I, Coskun S, El-Doush I, et al. Outcome of in-vitro fertilization treatment and DDT levels in serum and follicular fluid[J]. Med Sci Monit, 2009, 15(11):BR320-BR333. |
[13] |
Mahalingaiah S, Missmer SA, Maity A, et al. Association of hexachlorobenzene (HCB), dichlorodiphenyltrichloroethane (DDT), and dichlorodiphenyldichloroethylene(DDE) with in vitro fertilization (IVF) outcomes[J]. Environ Health Perspect, 2012, 120(2):316-320. doi: 10.1289/ehp.1103696.
doi: 10.1289/ehp.1103696 URL |
[14] |
Radwan P, Wielgomas B, Radwan M, et al. Synthetic Pyrethroids Exposure and Embryological Outcomes: A Cohort Study in Women from Fertility Clinic[J]. Int J Environ Res Public Health, 2022, 19(9):5117. doi: 10.3390/ijerph19095117.
doi: 10.3390/ijerph19095117 URL |
[15] |
Colorado-Yohar SM, Castillo-González AC, Sánchez-Meca J, et al. Concentrations of bisphenol-A in adults from the general population: A systematic review and meta-analysis[J]. Sci Total Environ, 2021, 775:145755. doi: 10.1016/j.scitotenv.2021.145755.
doi: 10.1016/j.scitotenv.2021.145755 URL |
[16] |
Ruiz T, Grigio V, Ferrato LJ, et al. Impairment of steroidogenesis and follicle development after bisphenol A exposure during pregnancy and lactation in the ovaries of Mongolian gerbils aged females[J]. Mol Cell Endocrinol, 2023,566-567:111892. doi: 10.1016/j.mce.2023.111892.
doi: 10.1016/j.mce.2023.111892 |
[17] |
Khaghani AJ, Farrokh P, Zavareh S. Epigenetic effects of Bisphenol A on granulosa cells of mouse follicles during in vitro culture: An experimental study[J]. Int J Reprod Biomed, 2021, 19(2):129-136. doi: 10.18502/ijrm.v19i2.8471.
doi: 10.18502/ijrm.v19i2.8471 pmid: 33718757 |
[18] |
Fan H, Fernando SR, Jiang L, et al. Bisphenol A Analogues Suppress Spheroid Attachment on Human Endometrial Epithelial Cells through Modulation of Steroid Hormone Receptors Signaling Pathway[J]. Cells, 2021, 10(11):2882. doi: 10.3390/cells10112882.
doi: 10.3390/cells10112882 URL |
[19] |
Caserta D, Costanzi F, De Marco MP, et al. Effects of Endocrine-Disrupting Chemicals on Endometrial Receptivity and Embryo Implantation: A Systematic Review of 34 Mouse Model Studies[J]. Int J Environ Res Public Health, 2021, 18(13):6840. doi: 10.3390/ijerph18136840.
doi: 10.3390/ijerph18136840 URL |
[20] |
Nelson W, Adu-Gyamfi EA, Czika A, et al. Bisphenol A-induced mechanistic impairment of decidualization[J]. Mol Reprod Dev, 2020, 87(8):837-842. doi: 10.1002/mrd.23400.
doi: 10.1002/mrd.23400 pmid: 32691498 |
[21] |
Pan MH, Wu YK, Liao BY, et al. Bisphenol A Exposure Disrupts Organelle Distribution and Functions During Mouse Oocyte Maturation[J]. Front Cell Dev Biol, 2021, 9:661155. doi: 10.3389/fcell.2021.661155.
doi: 10.3389/fcell.2021.661155 URL |
[22] |
Yang L, Baumann C, De La Fuente R, et al. Mechanisms underlying disruption of oocyte spindle stability by bisphenol compounds[J]. Reproduction, 2020, 159(4):383-396. doi: 10.1530/REP-19-0494.
doi: 10.1530/REP-19-0494 pmid: 31990668 |
[23] |
Vessa B, Perlman B, McGovern PG, et al. Endocrine disruptors and female fertility: a review of pesticide and plasticizer effects[J]. F S Rep, 2022, 3(2):86-90. doi: 10.1016/j.xfre.2022.04.003.
doi: 10.1016/j.xfre.2022.04.003 |
[24] |
Mok-Lin E, Ehrlich S, Williams PL, et al. Urinary bisphenol A concentrations and ovarian response among women undergoing IVF[J]. Int J Androl, 2010, 33(2):385-393. doi: 10.1111/j.1365-2605.2009.01014.x.
doi: 10.1111/j.1365-2605.2009.01014.x pmid: 20002217 |
[25] |
Radwan P, Wielgomas B, Radwan M, et al. Urinary bisphenol A concentrations and in vitro fertilization outcomes among women from a fertility clinic[J]. Reprod Toxicol, 2020, 96:216-220. doi: 10.1016/j.reprotox.2020.07.009.
doi: S0890-6238(20)30183-0 pmid: 32721521 |
[26] |
Shen J, Kang Q, Mao Y, et al. Urinary bisphenol A concentration is correlated with poorer oocyte retrieval and embryo implantation outcomes in patients with tubal factor infertility undergoing in vitro fertilisation[J]. Ecotoxicol Environ Saf, 2020, 187:109816. doi: 10.1016/j.ecoenv.2019.109816.
doi: 10.1016/j.ecoenv.2019.109816 URL |
[27] |
Mina A, Boutzios G, Papoutsis I, et al. Bisphenol A correlates with fewer retrieved oocytes in women with tubal factor infertility[J]. Hormones(Athens), 2022, 21(2):305-315. doi: 10.1007/s42000-022-00370-1.
doi: 10.1007/s42000-022-00370-1 |
[28] |
Mínguez-Alarcón L, Gaskins AJ, Chiu YH, et al. Urinary bisphenol A concentrations and association with in vitro fertilization outcomes among women from a fertility clinic[J]. Hum Reprod, 2015, 30(9):2120-2128. doi: 10.1093/humrep/dev183.
doi: 10.1093/humrep/dev183 URL |
[29] |
Kim HK, Ko DH, Lee W, et al. Body fluid concentrations of bisphenol A and their association with in vitro fertilization outcomes[J]. Hum Fertil(Camb), 2021, 24(3):199-207. doi: 10.1080/14647273.2019.1612104.
doi: 10.1080/14647273.2019.1612104 |
[30] |
Basso CG, de Araújo-Ramos AT, Martino-Andrade AJ. Exposure to phthalates and female reproductive health: A literature review[J]. Reprod Toxicol, 2022, 109:61-79. doi: 10.1016/j.reprotox.2022.02.006.
doi: 10.1016/j.reprotox.2022.02.006 pmid: 35248714 |
[31] |
Wang JJ, Tian Y, Li MH, et al. Single-cell transcriptome dissection of the toxic impact of Di (2-ethylhexyl) phthalate on primordial follicle assembly[J]. Theranostics, 2021, 11(10):4992-5009. doi: 10.7150/thno.55006.
doi: 10.7150/thno.55006 URL |
[32] |
Liu JC, Xing CH, Xu Y, et al. DEHP exposure to lactating mice affects ovarian hormone production and antral follicle development of offspring[J]. J Hazard Mater, 2021, 416:125862. doi: 10.1016/j.jhazmat.2021.125862.
doi: 10.1016/j.jhazmat.2021.125862 URL |
[33] |
Meling DD, Warner GR, Szumski JR, et al. The effects of a phthalate metabolite mixture on antral follicle growth and sex steroid synthesis in mice[J]. Toxicol Appl Pharmacol, 2020, 388:114875. doi: 10.1016/j.taap.2019.114875.
doi: 10.1016/j.taap.2019.114875 URL |
[34] |
Pocar P, Fiandanese N, Secchi C, et al. Exposure to di(2-ethyl-hexyl) phthalate (DEHP) in utero and during lactation causes long-term pituitary-gonadal axis disruption in male and female mouse offspring[J]. Endocrinology, 2012, 153(2):937-948. doi: 10.1210/en.2011-1450.
doi: 10.1210/en.2011-1450 pmid: 22147016 |
[35] |
Lu Z, Zhang C, Han C, et al. Plasticizer Bis(2-ethylhexyl) Phthalate Causes Meiosis Defects and Decreases Fertilization Ability of Mouse Oocytes in Vivo[J]. J Agric Food Chem, 2019, 67(12):3459-3468. doi: 10.1021/acs.jafc.9b00121.
doi: 10.1021/acs.jafc.9b00121 URL |
[36] |
Absalan F, Saremy S, Mansori E, et al. Effects of Mono-(2-Ethylhexyl) Phthalate and Di-(2-Ethylhexyl) Phthalate Administrations on Oocyte Meiotic Maturation, Apoptosis and Gene Quantification in Mouse Model[J]. Cell J, 2017, 18(4):503-513. doi: 10.22074/cellj.2016.4717.
doi: 10.22074/cellj.2016.4717 pmid: 28042535 |
[37] |
Hauser R, Gaskins AJ, Souter I, et al. Urinary Phthalate Metabolite Concentrations and Reproductive Outcomes among Women Undergoing in Vitro Fertilization: Results from the EARTH Study[J]. Environ Health Perspect, 2016, 124(6):831-839. doi: 10.1289/ehp.1509760.
doi: 10.1289/ehp.1509760 URL |
[38] |
Al-Saleh I, Coskun S, Al-Doush I, et al. Couples exposure to phthalates and its influence on in vitro fertilization outcomes[J]. Chemosphere, 2019, 226:597-606. doi: 10.1016/j.chemosphere.2019.03.146.
doi: S0045-6535(19)30592-2 pmid: 30954894 |
[39] |
Machtinger R, Gaskins AJ, Racowsky C, et al. Urinary concentrations of biomarkers of phthalates and phthalate alternatives and IVF outcomes[J]. Environ Int, 2018, 111:23-31. doi: 10.1016/j.envint.2017.11.011.
doi: S0160-4120(17)31513-1 pmid: 29161633 |
[40] |
Bellavia A, Zou R, Björvang RD, et al. Association between chemical mixtures and female fertility in women undergoing assisted reproduction in Sweden and Estonia[J]. Environ Res, 2023, 216(Pt 1):114447. doi: 10.1016/j.envres.2022.114447.
doi: 10.1016/j.envres.2022.114447 URL |
[41] |
Deng T, Du Y, Wang Y, et al. The associations of urinary phthalate metabolites with the intermediate and pregnancy outcomes of women receiving IVF/ICSI treatments: A prospective single-center study[J]. Ecotoxicol Environ Saf, 2020, 188:109884. doi: 10.1016/j.ecoenv.2019.109884.
doi: 10.1016/j.ecoenv.2019.109884 URL |
[1] | 宋丹妮, 朱蓉, 蒲丛珊, 王义婷, 姜微微, 胡双, 单春剑. 辅助生殖技术助孕患者痛苦表露的潜在剖面分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 441-446. |
[2] | 宫政, 王聪, 宋佳怡, 夏天. 基于数据挖掘探讨中医药在辅助生殖技术中的分期应用[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 361-367. |
[3] | 朱海英, 齐丹丹, 孙平平, 孙娜, 栾素娴. 辅助生殖技术助孕后卵巢过度刺激综合征合并卵巢扭转一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 401-405. |
[4] | 罗莎莎, 王德婧. 冻融胚胎移植妊娠结局相关影响因素分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 420-424. |
[5] | 赵安琪, 刘霖, 谭小方. HPV经精子传播及其对早期胚胎发育的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 328-331. |
[6] | 李宁, 张安妮, 何晓霞, 张学红. 冻融胚胎移植后妊娠期高血压疾病发生的列线图预测模型构建[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 177-184. |
[7] | 贺晴雯, 李喜红. 辅助生殖技术助孕患者的睡眠障碍及非药物干预的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 234-237. |
[8] | 叶霖, 侯志金, 孟昱时. 西罗莫司在生殖领域的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 132-137. |
[9] | 吴静, 刘聪, 谢青贞. 微塑料暴露对雌性及其子代健康的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 155-158. |
[10] | 郝佳丽, 何玉洁. 不孕不育人群生育生活质量评价及其影响因素分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 159-165. |
[11] | 李婷婷, 谭小方, 施蔚虹. 辅助生殖技术助孕后三胎合并双胎反向动脉灌注序列征一例并文献复习[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 24-27. |
[12] | 李彩华, 郭培培, 姜小花, 方有燕, 周平, 魏兆莲. 卵泡期高孕激素状态下促排卵方案的应用进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 68-73. |
[13] | 叶明珠, 郑洁, 李杰芃, 许莉欣. 医源性卵巢储备功能减退患者的卵母细胞冷冻生育力保存应用[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 498-502. |
[14] | 牛国燕, 熊正方. 经阴道超声引导下穿刺取卵术镇痛方式的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(6): 507-512. |
[15] | 丁凯, 赵纯, 凌秀凤, 李欣. 冻融胚胎移植临床妊娠的影响因素分析及列线图预测模型构建[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 353-360. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||