国际生殖健康/计划生育杂志 ›› 2023, Vol. 42 ›› Issue (4): 310-316.doi: 10.12280/gjszjk.20230089
收稿日期:
2023-02-27
出版日期:
2023-07-15
发布日期:
2023-07-26
通讯作者:
夏天
E-mail:xiatian76@163.com
基金资助:
WEN Xin, ZHAO Xiao-li, LUAN Zu-qian, GAO Na, DONG Rong, XIA Tian()
Received:
2023-02-27
Published:
2023-07-15
Online:
2023-07-26
Contact:
XIA Tian
E-mail:xiatian76@163.com
摘要:
N6-甲基腺嘌呤(N6-methyladenosine,m6A)是指RNA腺苷第6位氮(N)原子的甲基化修饰,是哺乳动物mRNA中最为丰富的表观转录组学修饰。m6A依赖于甲基转移酶(Writer)、去甲基化转移酶(Eraser)和m6A结合蛋白(Reader)的共同调控作用。诸多研究表明m6A及其调节酶几乎存在于各个发育阶段的卵泡及早期胚胎组织中,凭借其动态、可逆、敏感的特性广泛地参与mRNA的代谢过程,在转录后水平调控卵子发生,早期胚胎的核重编程、谱系分化、种植以及妊娠维持,在很大程度上决定了女性的生育能力和妊娠结局,并有望成为诸多生殖障碍相关疾病的诊断、预后标志物以及新的治疗靶点。
闻鑫, 赵晓丽, 栾祖乾, 高娜, 董融, 夏天. N6-甲基腺嘌呤修饰在卵子发生及早期胚胎发育中的调控作用[J]. 国际生殖健康/计划生育杂志, 2023, 42(4): 310-316.
WEN Xin, ZHAO Xiao-li, LUAN Zu-qian, GAO Na, DONG Rong, XIA Tian. Regulatory Role of N6-Methyladenosine Modification in Oogenesis and Early Embryonic Development[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 310-316.
[1] |
Han B, Yan S, Wei S, et al. YTHDF1-mediated translation amplifies Wnt-driven intestinal stemness[J]. EMBO Rep, 2020, 21(4):e49229. doi: 10.15252/embr.201949229.
doi: 10.15252/embr.201949229 URL |
[2] |
Lence T, Paolantoni C, Worpenberg L, et al. Mechanistic insights into m6A RNA enzymes[J]. Biochim Biophys Acta Gene Regul Mech, 2019, 1862(3):222-229. doi: 10.1016/j.bbagrm.2018.10.014.
doi: 10.1016/j.bbagrm.2018.10.014 URL |
[3] |
Huang H, Weng H, Chen J. m6A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer[J]. Cancer Cell, 2020, 37(3):270-288. doi: 10.1016/j.ccell.2020.02.004.
doi: 10.1016/j.ccell.2020.02.004 URL |
[4] |
Wang X, Pepling ME. Regulation of Meiotic Prophase One in Mammalian Oocytes[J]. Front Cell Dev Biol, 2021, 9:667306. doi: 10.3389/fcell.2021.667306.
doi: 10.3389/fcell.2021.667306 URL |
[5] |
Llonch S, Barragán M, Nieto P, et al. Single human oocyte transcriptome analysis reveals distinct maturation stage-dependent pathways impacted by age[J]. Aging Cell, 2021, 20(5):e13360. doi: 10.1111/acel.13360.
doi: 10.1111/acel.13360 |
[6] |
Sha QQ, Zhang J, Fan HY. A story of birth and death: mRNA translation and clearance at the onset of maternal-to-zygotic transition in mammals[J]. Biol Reprod, 2019, 101(3):579-590. doi: 10.1093/biolre/ioz012.
doi: 10.1093/biolre/ioz012 URL |
[7] |
Sui X, Hu Y, Ren C, et al. METTL3-mediated m6A is required for murine oocyte maturation and maternal-to-zygotic transition[J]. Cell Cycle, 2020, 19(4):391-404. doi: 10.1080/15384101.2019.1711324.
doi: 10.1080/15384101.2019.1711324 URL |
[8] |
Mu H, Zhang T, Yang Y, et al. METTL3-mediated mRNA N6-methyladenosine is required for oocyte and follicle development in mice[J]. Cell Death Dis, 2021, 12(11):989. doi: 10.1038/s41419-021-04272-9.
doi: 10.1038/s41419-021-04272-9 |
[9] |
McGlacken-Byrne SM, Del Valle I, Quesne Stabej PL, et al. Pathogenic variants in the human m6A reader YTHDC2 are associated with primary ovarian insufficiency[J]. JCI Insight, 2022, 7(5):e154671. doi: 10.1172/jci.insight.154671.
doi: 10.1172/jci.insight.154671 URL |
[10] |
Bailey AS, Batista PJ, Gold RS, et al. The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline[J]. Elife, 2017, 6:e26116. doi: 10.7554/eLife.26116.
doi: 10.7554/eLife.26116 URL |
[11] |
Wojtas MN, Pandey RR, Mendel M, et al. Regulation of m6A Transcripts by the 3′→5′ RNA Helicase YTHDC2 Is Essential for a Successful Meiotic Program in the Mammalian Germline[J]. Mol Cell, 2017, 68(2):374-387.e12. doi: 10.1016/j.molcel.2017.09.021.
doi: 10.1016/j.molcel.2017.09.021 URL |
[12] |
Abby E, Tourpin S, Ribeiro J, et al. Implementation of meiosis prophase I programme requires a conserved retinoid-independent stabilizer of meiotic transcripts[J]. Nat Commun, 2016, 7:10324. doi: 10.1038/ncomms10324.
doi: 10.1038/ncomms10324 pmid: 26742488 |
[13] |
Hsu PJ, Zhu Y, Ma H, et al. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis[J]. Cell Res, 2017, 27(9):1115-1127. doi: 10.1038/cr.2017.99.
doi: 10.1038/cr.2017.99 URL |
[14] |
Jain D, Puno MR, Meydan C, et al. ketu mutant mice uncover an essential meiotic function for the ancient RNA helicase YTHDC2[J]. Elife, 2018, 7:e30919. doi: 10.7554/eLife.30919.
doi: 10.7554/eLife.30919 URL |
[15] |
Li L, Krasnykov K, Homolka D, et al. The XRN1-regulated RNA helicase activity of YTHDC2 ensures mouse fertility independently of m6A recognition[J]. Mol Cell, 2022, 82(9):1678-1690.e12. doi: 10.1016/j.molcel.2022.02.034.
doi: 10.1016/j.molcel.2022.02.034 URL |
[16] |
Zhang S, Deng W, Liu Q, et al. Altered m6A modification is involved in up-regulated expression of FOXO3 in luteinized granulosa cells of non-obese polycystic ovary syndrome patients[J]. J Cell Mol Med, 2020, 24(20):11874-11882. doi: 10.1111/jcmm.15807.
doi: 10.1111/jcmm.15807 URL |
[17] |
Tan M, Cheng Y, Zhong X, et al. LNK promotes granulosa cell apoptosis in PCOS via negatively regulating insulin-stimulated AKT-FOXO3 pathway[J]. Aging(Albany NY), 2021, 13(3):4617-4633. doi: 10.18632/aging.202421.
doi: 10.18632/aging.202421 |
[18] |
Zhou L, Han X, Li W, et al. N6-methyladenosine Demethylase FTO Induces the Dysfunctions of Ovarian Granulosa Cells by Upregulating Flotillin 2[J]. Reprod Sci, 2022, 29(4):1305-1315. doi: 10.1007/s43032-021-00664-6.
doi: 10.1007/s43032-021-00664-6 |
[19] |
Jiang ZX, Wang YN, Li ZY, et al. Correction: The m6A mRNA demethylase FTO in granulosa cells retards FOS-dependent ovarian aging[J]. Cell Death Dis, 2021, 12(12):1114. doi: 10.1038/s41419-021-04194-6.
doi: 10.1038/s41419-021-04194-6 |
[20] |
Tian B, Manley JL. Alternative polyadenylation of mRNA precursors[J]. Nat Rev Mol Cell Biol, 2017, 18(1):18-30. doi: 10.1038/nrm.2016.116.
doi: 10.1038/nrm.2016.116 |
[21] |
Kasowitz SD, Ma J, Anderson SJ, et al. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development[J]. PLoS Genet, 2018, 14(5):e1007412. doi: 10.1371/journal.pgen.1007412.
doi: 10.1371/journal.pgen.1007412 URL |
[22] |
Hu Y, Ouyang Z, Sui X, et al. Oocyte competence is maintained by m6A methyltransferase KIAA1429-mediated RNA metabolism during mouse follicular development[J]. Cell Death Differ, 2020, 27(8):2468-2483. doi: 10.1038/s41418-020-0516-1.
doi: 10.1038/s41418-020-0516-1 |
[23] |
Wang YK, Yu XX, Liu YH, et al. Reduced nucleic acid methylation impairs meiotic maturation and developmental potency of pig oocytes[J]. Theriogenology, 2018, 121:160-167. doi: 10.1016/j.theriogenology.2018.08.009.
doi: 10.1016/j.theriogenology.2018.08.009 URL |
[24] |
Ivanova I, Much C, Di Giacomo M, et al. The RNA m6A Reader YTHDF2 Is Essential for the Post-transcriptional Regulation of the Maternal Transcriptome and Oocyte Competence[J]. Mol Cell, 2017, 67(6):1059-1067.e4. doi: 10.1016/j.molcel.2017.08.003.
doi: S1097-2765(17)30577-4 pmid: 28867294 |
[25] |
Toyooka Y. Trophoblast lineage specification in the mammalian preimplantation embryo[J]. Reprod Med Biol, 2020, 19(3):209-221. doi: 10.1002/rmb2.12333.
doi: 10.1002/rmb2.12333 pmid: 32684820 |
[26] |
Zhao BS, Wang X, Beadell AV, et al. m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition[J]. Nature, 2017, 542(7642):475-478. doi: 10.1038/nature21355.
doi: 10.1038/nature21355 |
[27] |
Deng M, Chen B, Liu Z, et al. YTHDF2 Regulates Maternal Transcriptome Degradation and Embryo Development in Goat[J]. Front Cell Dev Biol, 2020, 8:580367. doi: 10.3389/fcell.2020.580367.
doi: 10.3389/fcell.2020.580367 URL |
[28] |
Liu HB, Muhammad T, Guo Y, et al. RNA-Binding Protein IGF2BP2/IMP2 is a Critical Maternal Activator in Early Zygotic Genome Activation[J]. Adv Sci(Weinh), 2019, 6(15):1900295. doi: 10.1002/advs.201900295.
doi: 10.1002/advs.201900295 |
[29] |
Choi HS, Lee HM, Jang YJ, et al. Heterogeneous nuclear ribonucleoprotein A2/B1 regulates the self-renewal and pluripotency of human embryonic stem cells via the control of the G1/S transition[J]. Stem Cells, 2013, 31(12):2647-2658. doi: 10.1002/stem.1366.
doi: 10.1002/stem.1366 pmid: 23495120 |
[30] |
Kwon J, Jo YJ, Namgoong S, et al. Functional roles of hnRNPA2/B1 regulated by METTL3 in mammalian embryonic development[J]. Sci Rep, 2019, 9(1):8640. doi: 10.1038/s41598-019-44714-1.
doi: 10.1038/s41598-019-44714-1 pmid: 31201338 |
[31] |
Cao Z, Zhang L, Hong R, et al. METTL3-mediated m6A methylation negatively modulates autophagy to support porcine blastocyst development[J]. Biol Reprod, 2021, 104(5):1008-1021. doi: 10.1093/biolre/ioab022.
doi: 10.1093/biolre/ioab022 URL |
[32] |
Meng TG, Lu X, Guo L, et al. Mettl14 is required for mouse postimplantation development by facilitating epiblast maturation[J]. FASEB J, 2019, 33(1):1179-1187. doi: 10.1096/fj.201800719R.
doi: 10.1096/fj.201800719R URL |
[33] |
Wang Y, Li Y, Toth JI, et al. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells[J]. Nat Cell Biol, 2014, 16(2):191-198. doi: 10.1038/ncb2902.
doi: 10.1038/ncb2902 pmid: 24394384 |
[34] |
Wu R, Liu Y, Zhao Y, et al. m6A methylation controls pluripotency of porcine induced pluripotent stem cells by targeting SOCS3/JAK2/STAT3 pathway in a YTHDF1/YTHDF2-orchestrated manner[J]. Cell Death Dis, 2019, 10(3):171. doi: 10.1038/s41419-019-1417-4.
doi: 10.1038/s41419-019-1417-4 |
[35] |
Batista PJ, Molinie B, Wang J, et al. m6A RNA modification controls cell fate transition in mammalian embryonic stem cells[J]. Cell Stem Cell, 2014, 15(6):707-719. doi: 10.1016/j.stem.2014.09.019.
doi: 10.1016/j.stem.2014.09.019 pmid: 25456834 |
[36] |
Geula S, Moshitch-Moshkovitz S, Dominissini D, et al. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation[J]. Science, 2015, 347(6225):1002-1006. doi: 10.1126/science.1261417.
doi: 10.1126/science.1261417 pmid: 25569111 |
[37] |
Xue P, Zhou W, Fan W, et al. Increased METTL3-mediated m6A methylation inhibits embryo implantation by repressing HOXA10 expression in recurrent implantation failure[J]. Reprod Biol Endocrinol, 2021, 19(1):187. doi: 10.1186/s12958-021-00872-4.
doi: 10.1186/s12958-021-00872-4 |
[38] |
Qiu W, Zhou Y, Wu H, et al. RNA Demethylase FTO Mediated RNA m6A Modification Is Involved in Maintaining Maternal-Fetal Interface in Spontaneous Abortion[J]. Front Cell Dev Biol, 2021, 9:617172. doi: 10.3389/fcell.2021.617172.
doi: 10.3389/fcell.2021.617172 URL |
[39] |
Li XC, Jin F, Wang BY, et al. The m6A demethylase ALKBH5 controls trophoblast invasion at the maternal-fetal interface by regulating the stability of CYR61 mRNA[J]. Theranostics, 2019, 9(13):3853-3865. doi: 10.7150/thno.31868.
doi: 10.7150/thno.31868 URL |
[40] |
Guo Y, Song W, Yang Y. Inhibition of ALKBH5-mediated m6A modification of PPARG mRNA alleviates H/R-induced oxidative stress and apoptosis in placenta trophoblast[J]. Environ Toxicol, 2022, 37(4):910-924. doi: 10.1002/tox.23454.
doi: 10.1002/tox.23454 URL |
[1] | 焦梦文, 张月文, 王玲, 莫少康. 环状RNA在生殖系统的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 322-327. |
[2] | 赵安琪, 刘霖, 谭小方. HPV经精子传播及其对早期胚胎发育的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 328-331. |
[3] | 李苗苗, 江洪, 蔡朋达. 胚胎停育的影响因素分析及预测研究[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 332-337. |
[4] | 刘一燃, 冯睿芝, 钱云. 多囊卵巢综合征中翻译后修饰的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 38-42. |
[5] | 周昕玥, 张安妮, 张学红. m6A甲基化修饰在生殖相关疾病中的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 392-397. |
[6] | 倪丹玉, 杨烨, 谢奇君, 姜薇, 凌秀凤. 卵细胞质内单精子注射后多原核发生率对胚胎发育和妊娠结局的影响[J]. 国际生殖健康/计划生育杂志, 2023, 42(4): 272-276. |
[7] | 崔毓桂, 贾洪燕, 施陈楠, 严正杰, 刘嘉茵, 马翔. 卵母细胞线粒体移植及其伦理问题[J]. 国际生殖健康/计划生育杂志, 2023, 42(2): 89-94. |
[8] | 熊玉晶, 罗婉彬, 艾细雄, 徐艳文. 慢性子宫内膜炎致炎机制的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(1): 60-65. |
[9] | 陈志坚, 汪彩珠. 时差成像技术用于胚胎选择的研究进展[J]. 国际生殖健康/计划生育, 2022, 41(2): 139-142. |
[10] | 陈然然, 宋殿荣. 胚胎早期发育过程中主要信号通路的作用机制[J]. 国际生殖健康/计划生育, 2021, 40(6): 481-485. |
[11] | 李文澍, 刘雪梅. TUBB8基因突变致早期胚胎发育停滞一例[J]. 国际生殖健康/计划生育, 2021, 40(4): 303-305. |
[12] | 王斌, 高明霞, 沈豪飞, 王一青, 张学红. 间充质-上皮转化在女性生殖系统中的研究进展[J]. 国际生殖健康/计划生育, 2021, 40(1): 44-48. |
[13] | 朱璟希, 李红. 表观遗传学在复发性流产中的研究进展[J]. 国际生殖健康/计划生育, 2021, 40(1): 69-73. |
[14] | 张敏, 杜馨, 李贝贝, 姜宏. 卵母细胞线粒体DNA与胚胎质量的相关性研究进展[J]. 国际生殖健康/计划生育, 2020, 39(6): 486-489. |
[15] | 傅高惠, 杨天浩, 李超, 白银山△. TET3在生殖配子发生和胚胎发育中的调控作用[J]. 国际生殖健康/计划生育, 2020, 39(5): 401-406. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||