国际生殖健康/计划生育杂志 ›› 2023, Vol. 42 ›› Issue (1): 60-65.doi: 10.12280/gjszjk.20220294
收稿日期:
2022-06-12
出版日期:
2023-01-15
发布日期:
2023-02-03
通讯作者:
徐艳文
E-mail:xuyanwen@mail.sysu.edu.cn
基金资助:
XIONG Yu-jing, LUO Wan-bin, AI Xi-xiong, XU Yan-wen()
Received:
2022-06-12
Published:
2023-01-15
Online:
2023-02-03
Contact:
XU Yan-wen
E-mail:xuyanwen@mail.sysu.edu.cn
摘要:
慢性子宫内膜炎(chronic endometritis,CE)是病原体感染所致的慢性子宫内膜炎性疾病,与不良妊娠结局密切相关。目前关于CE的诊断和治疗尚不统一,研究CE的致炎机制有助于完善相关的诊断和治疗方法。炎症通路如Toll样受体通路和NOD样受体通路的异常激活是导致CE炎症反应发生发展的重要机制。子宫内膜免疫细胞代谢改变、微小RNA失调和DNA甲基化模式改变等机制也可通过相关通路介导炎性介质生成,参与CE的发生发展。综述CE的致炎机制,为深入认识CE的病理生理改变,寻求更规范有效的诊疗措施提供参考。
熊玉晶, 罗婉彬, 艾细雄, 徐艳文. 慢性子宫内膜炎致炎机制的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(1): 60-65.
XIONG Yu-jing, LUO Wan-bin, AI Xi-xiong, XU Yan-wen. The Pathogenesis of Chronic Endometritis: A Review[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(1): 60-65.
调控通路 | miRNA | 所用细胞 模型 | 靶点 | 功能 | 参考 文献 |
---|---|---|---|---|---|
TLR通路 | miR-34a | BEEC | LGR4 | 促炎 | [ |
miR-643 | HEEC | TRAF6 | 抑炎 | [ | |
miR-505 | BEEC | HMGB1 | 抑炎 | [ | |
miR-let-7c-5p | BEEC | Ras | 抑炎 | [ | |
miR-424-5p | BEEC | IRAK2 | 抑炎 | [ | |
miR-218 | BEEC | MIP-1 | 抑炎 | [ | |
miR-19a | BEEC | TBK1 | 抑炎 | [ | |
miR-1434-5p | BESC | TBK1、CXCL5、 CXCL8、CXCL9 | 抑炎 | [ | |
miR-200c | BESC | RelA(p65) | 抑炎 | [ | |
miR-1247-3p | BESC | MAPK11 | 抑炎 | [ | |
NLR通路 | miR-31 | BESC | IL-1β | 抑炎 | [ |
表1 调控CE炎症通路的miRNA
调控通路 | miRNA | 所用细胞 模型 | 靶点 | 功能 | 参考 文献 |
---|---|---|---|---|---|
TLR通路 | miR-34a | BEEC | LGR4 | 促炎 | [ |
miR-643 | HEEC | TRAF6 | 抑炎 | [ | |
miR-505 | BEEC | HMGB1 | 抑炎 | [ | |
miR-let-7c-5p | BEEC | Ras | 抑炎 | [ | |
miR-424-5p | BEEC | IRAK2 | 抑炎 | [ | |
miR-218 | BEEC | MIP-1 | 抑炎 | [ | |
miR-19a | BEEC | TBK1 | 抑炎 | [ | |
miR-1434-5p | BESC | TBK1、CXCL5、 CXCL8、CXCL9 | 抑炎 | [ | |
miR-200c | BESC | RelA(p65) | 抑炎 | [ | |
miR-1247-3p | BESC | MAPK11 | 抑炎 | [ | |
NLR通路 | miR-31 | BESC | IL-1β | 抑炎 | [ |
[1] |
Kimura F, Takebayashi A, Ishida M, et al. Review: Chronic endometritis and its effect on reproduction[J]. J Obstet Gynaecol Res, 2019, 45(5):951-960. doi: 10.1111/jog.13937.
doi: 10.1111/jog.13937 URL |
[2] |
Morimune A, Kimura F, Nakamura A, et al. The effects of chronic endometritis on the pregnancy outcomes[J]. Am J Reprod Immunol, 2021, 85(3):e13357. doi: 10.1111/aji.13357.
doi: 10.1111/aji.13357 |
[3] |
Duan H, Li X, Hao Y, et al. Risk of spontaneous abortion after antibiotic therapy for chronic endometritis before in vitro fertilization and intracytoplasmic sperm injection stimulation[J]. Fertil Steril, 2022, 118(2):337-346. doi: 10.1016/j.fertnstert.2022.04.026.
doi: 10.1016/j.fertnstert.2022.04.026 URL |
[4] |
Cheng X, Huang Z, Xiao Z, et al. Does antibiotic therapy for chronic endometritis improve clinical outcomes of patients with recurrent implantation failure in subsequent IVF cycles? A systematic review and meta-analysis[J]. J Assist Reprod Genet, 2022, 39(8):1797-1813. doi: 10.1007/s10815-022-02558-1.
doi: 10.1007/s10815-022-02558-1 URL |
[5] |
Huang G, Yao D, Yan X, et al. Emerging role of toll-like receptors signaling and its regulators in preterm birth: a narrative review[J]. Arch Gynecol Obstet, 2022 Aug 2. doi: 10.1007/s00404-022-06701-2. Eupb ahead of print.
doi: 10.1007/s00404-022-06701-2 |
[6] |
Chen P, Chen P, Guo Y, et al. Interaction Between Chronic Endometritis Caused Endometrial Microbiota Disorder and Endometrial Immune Environment Change in Recurrent Implantation Failure[J]. Front Immunol, 2021, 12:748447. doi: 10.3389/fimmu.2021.748447.
doi: 10.3389/fimmu.2021.748447 URL |
[7] |
Cluxton D, Petrasca A, Moran B, et al. Differential Regulation of Human Treg and Th17 Cells by Fatty Acid Synthesis and Glycolysis[J]. Front Immunol, 2019, 10:115. doi: 10.3389/fimmu.2019.00115.
doi: 10.3389/fimmu.2019.00115 pmid: 30778354 |
[8] |
Wang X, Yao X, Xie T, et al. Exosome-derived uterine miR-218 isolated from cows with endometritis regulates the release of cytokines and chemokines[J]. Microb Biotechnol, 2020, 13(4):1103-1117. doi: 10.1111/1751-7915.13565.
doi: 10.1111/1751-7915.13565 pmid: 32227590 |
[9] |
Tian J, Avalos AM, Mao SY, et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE[J]. Nat Immunol, 2007, 8(5):487-496. doi: 10.1038/ni1457.
doi: 10.1038/ni1457 pmid: 17417641 |
[10] |
Shaukat A, Shaukat I, Rajput SA, et al. Icariin Alleviates Escherichia coli Lipopolysaccharide-Mediated Endometritis in Mice by Inhibiting Inflammation and Oxidative Stress[J]. Int J Mol Sci, 2022, 23(18):10219. doi: 10.3390/ijms231810219.
doi: 10.3390/ijms231810219 URL |
[11] |
Zenke K, Muroi M, Tanamoto KI. AKT1 distinctively suppresses MyD88-depenedent and TRIF-dependent Toll-like receptor signaling in a kinase activity-independent manner[J]. Cell Signal, 2018, 43:32-39. doi: 10.1016/j.cellsig.2017.12.002.
doi: S0898-6568(17)30322-4 pmid: 29242168 |
[12] |
Zhou F, Li C, Zhang SY. NLRP3 inflammasome: a new therapeutic target for high-risk reproductive disorders?[J]. Chin Med J(Engl), 2020, 134(1):20-27. doi: 10.1097/CM9.0000000000001214.
doi: 10.1097/CM9.0000000000001214 |
[13] |
Kelly P, Meade KG, O′Farrelly C. Non-canonical Inflammasome-Mediated IL-1β Production by Primary Endometrial Epithelial and Stromal Fibroblast Cells Is NLRP3 and Caspase-4 Dependent[J]. Front Immunol, 2019, 10:102. doi: 10.3389/fimmu.2019.00102.
doi: 10.3389/fimmu.2019.00102 pmid: 30804935 |
[14] |
Hu X, Li D, Wang J, et al. Melatonin inhibits endoplasmic reticulum stress-associated TXNIP/NLRP3 inflammasome activation in lipopolysaccharide-induced endometritis in mice[J]. Int Immunopharmacol, 2018, 64:101-109. doi: 10.1016/j.intimp.2018.08.028.
doi: S1567-5769(18)30448-X pmid: 30170255 |
[15] |
Mohamed A, Yang D, Liu S, et al. Endoplasmic reticulum stress is involved in lipopolysaccharide-induced inflammatory response and apoptosis in goat endometrial stromal cells[J]. Mol Reprod Dev, 2019, 86(7):908-921. doi: 10.1002/mrd.23152.
doi: 10.1002/mrd.23152 pmid: 31041824 |
[16] |
Place DE, Kanneganti TD. Recent advances in inflammasome biology[J]. Curr Opin Immunol, 2018, 50:32-38. doi: 10.1016/j.coi.2017.10.011.
doi: S0952-7915(17)30157-7 pmid: 29128729 |
[17] |
Plazyo O, Romero R, Unkel R, et al. HMGB1 Induces an Inflammatory Response in the Chorioamniotic Membranes That Is Partially Mediated by the Inflammasome[J]. Biol Reprod, 2016, 95(6):130. doi: 10.1095/biolreprod.116.144139.
doi: 10.1095/biolreprod.116.144139 pmid: 27806943 |
[18] |
Yang C, Lei L, Collins J, et al. Chlamydia evasion of neutrophil host defense results in NLRP3 dependent myeloid-mediated sterile inflammation through the purinergic P2X7 receptor[J]. Nat Commun, 2021, 12(1):5454. doi: 10.1038/s41467-021-25749-3.
doi: 10.1038/s41467-021-25749-3 pmid: 34526512 |
[19] |
Lu M, Ma F, Xiao J, et al. NLRP3 inflammasome as the potential target mechanism and therapy in recurrent spontaneous abortions[J]. Mol Med Rep, 2019, 19(3):1935-1941. doi: 10.3892/mmr.2019.9829.
doi: 10.3892/mmr.2019.9829 pmid: 30628671 |
[20] |
Li Y, Yu S, Huang C, et al. Evaluation of peripheral and uterine immune status of chronic endometritis in patients with recurrent reproductive failure[J]. Fertil Steril, 2020, 113(1):187-196.e1. doi: 10.1016/j.fertnstert.2019.09.001.
doi: S0015-0282(19)32314-3 pmid: 31718829 |
[21] |
Lin Y, Xue K, Li Q, et al. Cyclin-Dependent Kinase 7 Promotes Th17/Th1 Cell Differentiation in Psoriasis by Modulating Glycolytic Metabolism[J]. J Invest Dermatol, 2021, 141(11):2656-2667.e11. doi: 10.1016/j.jid.2021.04.018.
doi: 10.1016/j.jid.2021.04.018 pmid: 34004188 |
[22] |
Kazmi S, Khan MA, Shamma T, et al. Therapeutic nexus of T cell immunometabolism in improving transplantation immunotherapy[J]. Int Immunopharmacol, 2022, 106:108621. doi: 10.1016/j.intimp.2022.108621.
doi: 10.1016/j.intimp.2022.108621 URL |
[23] |
Coillard A, Guyonnet L, De Juan A, et al. TLR or NOD receptor signaling skews monocyte fate decision via distinct mechanisms driven by mTOR and miR-155[J]. Proc Natl Acad Sci U S A, 2021, 118(43):e2109225118. doi: 10.1073/pnas.2109225118.
doi: 10.1073/pnas.2109225118 URL |
[24] |
Choi G, Na H, Kuen DS, et al. Autocrine TGF-β1 Maintains the Stability of Foxp3(+) Regulatory T Cells via IL-12Rβ2 Downregulation[J]. Biomolecules, 2020, 10(6):819. doi: 10.3390/biom10060819.
doi: 10.3390/biom10060819 URL |
[25] |
Muralidharan S, Torta F, Lin MK, et al. Immunolipidomics Reveals a Globoside Network During the Resolution of Pro-Inflammatory Response in Human Macrophages[J]. Front Immunol, 2022, 13:926220. doi: 10.3389/fimmu.2022.926220.
doi: 10.3389/fimmu.2022.926220 URL |
[26] |
Lv H, Yan C, Deng L, et al. Role of MicroRNAs in Protective Effects of Forsythoside A Against Lipopolysaccharide-Induced Inflammation in Bovine Endometrial Stromal Cells[J]. Front Vet Sci, 2021, 8:642913. doi: 10.3389/fvets.2021.642913.
doi: 10.3389/fvets.2021.642913 URL |
[27] |
Ma X, Yin B, Guo S, et al. Enhanced Expression of miR-34a Enhances Escherichia coli Lipopolysaccharide-Mediated Endometritis by Targeting LGR4 to Activate the NF-κB Pathway[J]. Oxid Med Cell Longev, 2021, 2021:1744754. doi: 10.1155/2021/1744754.
doi: 10.1155/2021/1744754 |
[28] |
Zhao R, Wang J, Zhang X, et al. MiR-643 inhibits lipopolysaccharide-induced endometritis progression by targeting TRAF6[J]. Cell Biol Int, 2020, 44(4):1059-1067. doi: 10.1002/cbin.11306.
doi: 10.1002/cbin.11306 pmid: 31930635 |
[29] |
Liu J, Guo S, Zhang T, et al. MiR-505 as an anti-inflammatory regulator suppresses HMGB1/NF-κB pathway in lipopolysaccharide-mediated endometritis by targeting HMGB1[J]. Int Immunopharmacol, 2020, 88:106912. doi: 10.1016/j.intimp.2020.106912.
doi: 10.1016/j.intimp.2020.106912 URL |
[30] |
Zhao G, Zhang T, Wu H, et al. MicroRNA let-7c Improves LPS-Induced Outcomes of Endometritis by Suppressing NF-κB Signaling[J]. Inflammation, 2019, 42(2):650-657. doi: 10.1007/s10753-018-0922-4.
doi: 10.1007/s10753-018-0922-4 pmid: 30406463 |
[31] |
Umar T, Ma X, Yin B, et al. miR-424-5p overexpression inhibits LPS-stimulated inflammatory response in bovine endometrial epithelial cells by targeting IRAK2[J]. J Reprod Immunol, 2022, 150:103471. doi: 10.1016/j.jri.2021.103471.
doi: 10.1016/j.jri.2021.103471 URL |
[32] |
Yin N, Yang Y, Wang X, et al. MiR-19a mediates the negative regulation of the NF-κB pathway in lipopolysaccharide-induced endometritis by targeting TBK1[J]. Inflamm Res, 2019, 68(3):231-240. doi: 10.1007/s00011-019-01213-3.
doi: 10.1007/s00011-019-01213-3 pmid: 30673803 |
[33] |
Yan C, Lv H, Peng Z, et al. Analysis of miRNA expression changes in bovine endometrial stromal cells treated with lipopolysaccharide[J]. Theriogenology, 2021, 167:85-93. doi: 10.1016/j.theriogenology.2021.03.012.
doi: 10.1016/j.theriogenology.2021.03.012 pmid: 33784501 |
[34] |
Zhang Y, Liu Y, Liu H, et al. Exosomes: biogenesis, biologic function and clinical potential[J]. Cell Biosci, 2019, 9:19. doi: 10.1186/s13578-019-0282-2.
doi: 10.1186/s13578-019-0282-2 pmid: 30815248 |
[35] |
Okoye IS, Coomes SM, Pelly VS, et al. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells[J]. Immunity, 2014, 41(1):89-103. doi: 10.1016/j.immuni.2014.05.019.
doi: 10.1016/j.immuni.2014.05.019 pmid: 25035954 |
[36] |
Jhamat N, Niazi A, Guo Y, et al. LPS-treatment of bovine endometrial epithelial cells causes differential DNA methylation of genes associated with inflammation and endometrial function[J]. BMC Genomics, 2020, 21(1):385. doi: 10.1186/s12864-020-06777-7.
doi: 10.1186/s12864-020-06777-7 pmid: 32493210 |
[37] |
Shakespear MR, Halili MA, Irvine KM, et al. Histone deacetylases as regulators of inflammation and immunity[J]. Trends Immunol, 2011, 32(7):335-343. doi: 10.1016/j.it.2011.04.001.
doi: 10.1016/j.it.2011.04.001 pmid: 21570914 |
[38] |
Retis-Resendiz AM, González-García IN, León-Juárez M, et al. The role of epigenetic mechanisms in the regulation of gene expression in the cyclical endometrium[J]. Clin Epigenetics, 2021, 13(1):116. doi:10.1186/s13148-021-01103-8.
doi: 10.1186/s13148-021-01103-8 pmid: 34034824 |
[1] | 高征, 李梦元, 李博, 梁婧翘, 张雅冬, 许昕. 中药复方干预肥胖型多囊卵巢综合征糖脂代谢异常的Meta分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 368-377. |
[2] | 李佳丽, 涂许许, 王士萌, 牛丁忍, 冯晓玲. 母胎界面氧化应激与复发性流产[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 435-440. |
[3] | 石百超, 常惠, 王宇, 卢凤娟, 王凯悦, 关木馨, 马良, 吴效科. 肠道菌群在多囊卵巢综合征中的作用机制[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 238-242. |
[4] | 闻鑫, 赵晓丽, 栾祖乾, 夏天. 母胎界面免疫代谢微环境调节胚胎着床的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 138-143. |
[5] | 任露露, 任文超, 张晓轩, 任春娥. 多囊卵巢综合征患者卵巢颗粒细胞胰岛素抵抗的相关信号通路[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 32-37. |
[6] | 周昕玥, 李宁, 魏林飞, 张学红. 肠道菌群及肠道代谢物与多囊卵巢综合征的关系[J]. 国际生殖健康/计划生育杂志, 2024, 43(1): 42-47. |
[7] | 何玥, 崔红梅. 铁死亡在产科疾病中的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 414-418. |
[8] | 贾立云, 弓苗, 杨会欣, 王熙, 封纪珍. 石家庄地区枫糖尿病患儿串联质谱筛查及BCKDHA、BCKDHB、DBT基因突变分析[J]. 国际生殖健康/计划生育杂志, 2023, 42(3): 203-205. |
[9] | 胡荣, 谢雷, 张丽洪, 胡俊平. 肠道菌群与男性不育症的相关性[J]. 国际生殖健康/计划生育杂志, 2023, 42(3): 236-239. |
[10] | 彭晶, 劳少杏, 宋鹏书, 韦红卫, 杨娟娟, 杨钦灵. 轻型地中海贫血孕妇BMI、血清白蛋白水平与妊娠期铁代谢的关系[J]. 国际生殖健康/计划生育杂志, 2023, 42(2): 107-110. |
[11] | 张路, 高彩虹, 包洪初. 生殖道微生物组学与慢性子宫内膜炎的相关性[J]. 国际生殖健康/计划生育杂志, 2023, 42(2): 167-171. |
[12] | 崔毓桂, 贾洪燕, 施陈楠, 严正杰, 刘嘉茵, 马翔. 卵母细胞线粒体移植及其伦理问题[J]. 国际生殖健康/计划生育杂志, 2023, 42(2): 89-94. |
[13] | 罗蓉, 王宇, 刘洋, 葛航, 吴效科. 不同月经稀发程度PCOS不孕患者的基线特征及妊娠结局的差异[J]. 国际生殖健康/计划生育, 2022, 41(6): 446-451. |
[14] | 周理韡, 郑书栋, 黄硕, 鲁婷, 刘悦, 丁之德. 生物信息学技术在生殖领域中的研究进展[J]. 国际生殖健康/计划生育, 2022, 41(6): 487-493. |
[15] | 甘冬英, 周红. 高龄女性卵子微环境的代谢组学研究进展[J]. 国际生殖健康/计划生育, 2022, 41(6): 494-498. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||