国际生殖健康/计划生育杂志 ›› 2023, Vol. 42 ›› Issue (5): 414-418.doi: 10.12280/gjszjk.20230197
收稿日期:
2023-05-10
出版日期:
2023-09-15
发布日期:
2023-09-13
通讯作者:
崔红梅
E-mail:cuihm@yeah.net
基金资助:
Received:
2023-05-10
Published:
2023-09-15
Online:
2023-09-13
Contact:
CUI Hong-mei
E-mail:cuihm@yeah.net
摘要:
铁死亡是一种新型的程序性细胞死亡方式,主要病理特征是游离铁和脂质过氧化产物的蓄积,主要涉及铁代谢、氨基酸代谢及脂质代谢等过程。近年研究显示,铁死亡通过影响细胞脂质代谢、氧化应激等多种途径导致滋养细胞损伤及胎盘功能障碍,在子痫前期、妊娠期糖尿病、自发性早产、流产及胎儿生长受限等产科疾病的发生、发展中起到重要调控作用。综述铁死亡的发生机制及其与产科疾病的相关性,为深入研究产科疾病的发病机制和治疗方法提供新思路。
何玥, 崔红梅. 铁死亡在产科疾病中的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 414-418.
HE Yue, CUI Hong-mei. Research Progress of Ferroptosis in Obstetric Diseases[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 414-418.
[1] |
熊姚西, 陈超, 刘金钰, 等. 铁死亡在妊娠相关疾病中的研究进展[J]. 中华围产医学杂志, 2023, 26(2):164-168. doi: 10.3760/cma.j.cn113903-20220513-00475.
doi: 10.3760/cma.j.cn113903-20220513-00475 |
[2] |
Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death[J]. Cell, 2012, 149(5):1060-1072. doi: 10.1016/j.cell.2012.03.042.
doi: 10.1016/j.cell.2012.03.042 pmid: 22632970 |
[3] |
Li J, Cao F, Yin HL, et al. Ferroptosis: past, present and future[J]. Cell Death Dis, 2020, 11(2):88. doi: 10.1038/s41419-020-2298-2.
doi: 10.1038/s41419-020-2298-2 pmid: 32015325 |
[4] |
Liu J, Kang R, Tang D. Signaling pathways and defense mechanisms of ferroptosis[J]. FEBS J, 2022, 289(22):7038-7050. doi: 10.1111/febs.16059.
doi: 10.1111/febs.16059 URL |
[5] |
吴昊霖, 徐怡倩, 方星悦, 等. 调节性铁死亡敏感相关基因研究进展[J]. 海南医学院学报, 2023, 29(2):146-152. doi: 10.13210/j.cnki.jhmu.20210616.003.
doi: 10.13210/j.cnki.jhmu.20210616.003 |
[6] |
程峰, 张庸, 王祥, 等. 谷胱甘肽过氧化物酶GPX4在铁死亡中的作用与机制研究进展[J]. 现代肿瘤医学, 2021, 29(7):1254-1258. doi: 10.3969/j.issn.1672-4992.2021.07.033.
doi: 10.3969/j.issn.1672-4992.2021.07.033 |
[7] |
Yang L, Jiang L, Sun X, et al. DEHP induces ferroptosis in testes via p38α-lipid ROS circulation and destroys the BTB integrity[J]. Food Chem Toxicol, 2022, 164:113046. doi: 10.1016/j.fct.2022.113046.
doi: 10.1016/j.fct.2022.113046 URL |
[8] |
Wang L, Liu C, Wang L, et al. Astragaloside Ⅳ mitigates cerebral ischaemia-reperfusion injury via inhibition of P62/Keap1/Nrf2 pathway-mediated ferroptosis[J]. Eur J Pharmacol, 2023, 944:175516. doi: 10.1016/j.ejphar.2023.175516.
doi: 10.1016/j.ejphar.2023.175516 URL |
[9] |
Hou W, Xie Y, Song X, et al. Autophagy promotes ferroptosis by degradation of ferritin[J]. Autophagy, 2016, 12(8):1425-1428. doi: 10.1080/15548627.2016.1187366.
doi: 10.1080/15548627.2016.1187366 pmid: 27245739 |
[10] |
Yang M, Tsui MG, Tsang J, et al. Involvement of FSP1-CoQ10-NADH and GSH-GPx-4 pathways in retinal pigment epithelium ferroptosis[J]. Cell Death Dis, 2022, 13(5):468. doi: 10.1038/s41419-022-04924-4.
doi: 10.1038/s41419-022-04924-4 |
[11] |
Park E, Chung SW. ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation[J]. Cell Death Dis, 2019, 10(11):822. doi: 10.1038/s41419-019-2064-5.
doi: 10.1038/s41419-019-2064-5 pmid: 31659150 |
[12] | 张永清, 陈丹青. 胎盘的结构及功能与母儿疾病[J]. 实用妇产科杂志, 2021, 37(1):1-3. |
[13] |
Zaugg J, Solenthaler F, Albrecht C. Materno-fetal iron transfer and the emerging role of ferroptosis pathways[J]. Biochem Pharmacol, 2022, 202:115141. doi: 10.1016/j.bcp.2022.115141.
doi: 10.1016/j.bcp.2022.115141 URL |
[14] |
Burton GJ, Cindrova-Davies T, Yung HW, et al. HYPOXIA AND REPRODUCTIVE HEALTH: Oxygen and development of the human placenta[J]. Reproduction, 2021, 161(1):F53-F65. doi: 10.1530/REP-20-0153.
doi: 10.1530/REP-20-0153 URL |
[15] |
廖婷婷, 徐霞, 颜建英. 铁死亡与子痫前期发病的研究进展[J]. 中国计划生育和妇产科, 2022, 14(3):9-12. doi: 10.3969/j.issn.1674-4020.2022.03.03.
doi: 10.3969/j.issn.1674-4020.2022.03.03 |
[16] |
张蕊, 王娜, 成小侠, 等. 妊娠期高血压及子痫前期患者血清炎症细胞因子水平对临床病情的影响[J]. 中国妇幼保健, 2020, 35(15):2771-2773. doi: 10.19829/j.zgfybj.issn.1001-4411.2020.15.011.
doi: 10.19829/j.zgfybj.issn.1001-4411.2020.15.011 |
[17] |
Zhang H, He Y, Wang JX, et al. miR-30-5p-mediated ferroptosis of trophoblasts is implicated in the pathogenesis of preeclampsia[J]. Redox Biol, 2020, 29:101402. doi: 10.1016/j.redox.2019.101402.
doi: 10.1016/j.redox.2019.101402 URL |
[18] |
Liao T, Xu X, Ye X, et al. DJ-1 upregulates the Nrf2/GPX4 signal pathway to inhibit trophoblast ferroptosis in the pathogenesis of preeclampsia[J]. Sci Rep, 2022, 12(1):2934. doi: 10.1038/s41598-022-07065-y.
doi: 10.1038/s41598-022-07065-y pmid: 35190654 |
[19] |
Yang N, Wang Q, Ding B, et al. Expression profiles and functions of ferroptosis-related genes in the placental tissue samples of early- and late-onset preeclampsia patients[J]. BMC Pregnancy Childbirth, 2022, 22(1):87. doi: 10.1186/s12884-022-04423-6.
doi: 10.1186/s12884-022-04423-6 |
[20] |
Feng Y, Feng Q, Lv Y, et al. The relationship between iron metabolism, stress hormones, and insulin resistance in gestational diabetes mellitus[J]. Nutr Diabetes, 2020, 10(1):17. doi: 10.1038/s41387-020-0122-9.
doi: 10.1038/s41387-020-0122-9 pmid: 32513913 |
[21] |
N Musina N, V Saprina T, S Prokhorenko T, et al. Correlations between Iron Metabolism Parameters, Inflammatory Markers and Lipid Profile Indicators in Patients with Type 1 and Type 2 Diabetes Mellitus[J]. J Pers Med, 2020, 10(3):70. doi: 10.3390/jpm10030070.
doi: 10.3390/jpm10030070 URL |
[22] | 连李斌, 陈蓓, 段蓓. 芍药苷调节Akt/Nrf2/GPX4通路对妊娠糖尿病大鼠铁死亡的影响[J]. 中国优生与遗传杂志, 2023, 31(1):22-26. |
[23] |
Li S, Zheng L, Zhang J, et al. Inhibition of ferroptosis by up-regulating Nrf2 delayed the progression of diabetic nephropathy[J]. Free Radic Biol Med, 2021, 162:435-449. doi: 10.1016/j.freeradbiomed.2020.10.323.
doi: 10.1016/j.freeradbiomed.2020.10.323 URL |
[24] |
孙平, 乔炳龙, 李超, 等. 褪黑素抑制氧化应激和铁死亡缓解妊娠糖尿病大鼠病理损伤[J]. 现代妇产科进展, 2021, 30(3):171-176. doi: 10.13283/j.cnki.xdfckjz.2021.03.003.
doi: 10.13283/j.cnki.xdfckjz.2021.03.003 |
[25] |
Beharier O, Tyurin VA, Goff JP, et al. PLA2G6 guards placental trophoblasts against ferroptotic injury[J]. Proc Natl Acad Sci U S A, 2020, 117(44):27319-27328. doi: 10.1073/pnas.2009201117.
doi: 10.1073/pnas.2009201117 URL |
[26] | 康阳, 吴思萍, 马静, 等. 广州地区流产妇女蜕膜组织中氧化应激指标评价[J]. 华南预防医学, 2012, 38(4):15-18. |
[27] |
Meihe L, Shan G, Minchao K, et al. The Ferroptosis-NLRP1 Inflammasome: The Vicious Cycle of an Adverse Pregnancy[J]. Front Cell Dev Biol, 2021, 9:707959. doi: 10.3389/fcell.2021.707959.
doi: 10.3389/fcell.2021.707959 URL |
[28] |
Bai RX, Tang ZY. Long non-coding RNA H19 regulates Bcl-2, Bax and phospholipid hydroperoxide glutathione peroxidase expression in spontaneous abortion[J]. Exp Ther Med, 2021, 21(1):41. doi: 10.3892/etm.2020.9473.
doi: 10.3892/etm.2020.9473 URL |
[29] |
Sun F, Cui L, Qian J, et al. Decidual Stromal Cell Ferroptosis Associated with Abnormal Iron Metabolism Is Implicated in the Pathogenesis of Recurrent Pregnancy Loss[J]. Int J Mol Sci, 2023, 24(9):7836. doi: 10.3390/ijms24097836.
doi: 10.3390/ijms24097836 URL |
[30] |
Zur RL, Kingdom JC, Parks WT, et al. The Placental Basis of Fetal Growth Restriction[J]. Obstet Gynecol Clin North Am, 2020, 47(1):81-98. doi: 10.1016/j.ogc.2019.10.008.
doi: 10.1016/j.ogc.2019.10.008 URL |
[31] |
Levy R, Smith SD, Yusuf K, et al. Trophoblast apoptosis from pregnancies complicated by fetal growth restriction is associated with enhanced p53 expression[J]. Am J Obstet Gynecol, 2002, 186(5):1056-1061. doi: 10.1067/mob.2002.122250.
doi: 10.1067/mob.2002.122250 pmid: 12015537 |
[32] |
Li S, Wang M, Wang Y, et al. p53-mediated ferroptosis is required for 1-methyl-4-phenylpyridinium-induced senescence of PC12 cells[J]. Toxicol In Vitro, 2021, 73:105146. doi: 10.1016/j.tiv.2021.105146.
doi: 10.1016/j.tiv.2021.105146 URL |
[33] |
Biri A, Bozkurt N, Turp A, et al. Role of oxidative stress in intrauterine growth restriction[J]. Gynecol Obstet Invest, 2007, 64(4):187-192. doi: 10.1159/000106488.
doi: 10.1159/000106488 pmid: 17664879 |
[1] | 高晓丽, 苏婧, 李增彦, 李洁. 14例妊娠相关溶血尿毒症综合征临床分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 458-461. |
[2] | 杨琴, 王涵婷, 曹媛媛, 周军, 王桂玲. 白藜芦醇对卵巢颗粒细胞功能的调节[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 524-528. |
[3] | 江楠, 赵晓丽, 栾祖乾, 黄志云, 夏天. 高龄女性卵母细胞内氧化应激与非整倍体相关性研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 415-419. |
[4] | 李轩昂, 王婷婷, 相珊, 赵帅, 连方. 铁死亡在多囊卵巢综合征中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 425-429. |
[5] | 李佳丽, 涂许许, 王士萌, 牛丁忍, 冯晓玲. 母胎界面氧化应激与复发性流产[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 435-440. |
[6] | 赵安琪, 刘霖, 谭小方. HPV经精子传播及其对早期胚胎发育的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 328-331. |
[7] | 柳芳蕾, 冯晓玲. 甲状腺相关激素与子痫前期的相关性[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 348-352. |
[8] | 林凯璇, 闻浩, 杨夫艳. 基于知识图谱的早发型子痫前期发病预测模型相关研究的可视化分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 101-107. |
[9] | 杨玉婷, 惠玲, 陈雪, 张钏, 田芯瑗, 周秉博. 一例产前Silver-Russell综合征胎儿的基因变异分析[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 371-376. |
[10] | 宋秋瑾, 钱晓红, 陈骞. 肠道菌群与妊娠并发症相关性的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 409-413. |
[11] | 朱梦一, 高敬书, 王宇, 冯佳兴, 张蓓, 吴效科. 生长分化因子15与不良妊娠结局的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 419-423. |
[12] | 高亚婷, 马建红, 马怡彤, 刘畅. 铁死亡与宫颈癌相关性的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 436-440. |
[13] | 王甜, 莫少康, 黄冰雪, 魏璐晓, 王玲. 氧化应激在卵巢相关生殖障碍疾病中的作用[J]. 国际生殖健康/计划生育杂志, 2023, 42(4): 317-322. |
[14] | 陈露, 杨春霞, 孙妍, 李峰, 薛同敏, 卢丹. 铁过载及铁死亡对子宫内膜异位症患者生殖功能的影响[J]. 国际生殖健康/计划生育杂志, 2023, 42(3): 261-264. |
[15] | 彭晶, 劳少杏, 宋鹏书, 韦红卫, 杨娟娟, 杨钦灵. 轻型地中海贫血孕妇BMI、血清白蛋白水平与妊娠期铁代谢的关系[J]. 国际生殖健康/计划生育杂志, 2023, 42(2): 107-110. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||