国际生殖健康/计划生育杂志 ›› 2024, Vol. 43 ›› Issue (2): 144-149.doi: 10.12280/gjszjk.20230416
收稿日期:
2023-10-12
出版日期:
2024-03-15
发布日期:
2024-03-22
通讯作者:
钱云
E-mail:qianyun@njmu.edu.cn
DAI He-qi, MAO Fei, FENG Rui-zhi, QIAN Yun()
Received:
2023-10-12
Published:
2024-03-15
Online:
2024-03-22
Contact:
QIAN Yun
E-mail:qianyun@njmu.edu.cn
摘要:
多囊卵巢综合征(polycystic ovary syndrome,PCOS)是一种常见的女性生殖内分泌疾病,受表观遗传和环境等多种因素影响。长链非编码RNA(long non-coding RNA,lncRNA)为不编码蛋白质且长度超过200个核苷酸的RNA分子,其可通过表观遗传修饰、转录及转录后调控等影响基因的表达。lncRNA可作为竞争性内源RNA(competing endogenous RNA,ceRNA)与微小RNA(microRNA,miRNA)竞争性结合,从而调控靶基因表达。作为一种新的调控机制,其可在细胞增殖分化、炎症反应及免疫应答等生物过程中发挥重要作用,并且与许多疾病密切相关。ceRNA假说的提出也使学者们对PCOS的发生发展机制有了进一步了解。近年来,ceRNA在PCOS中的研究也越来越多。在PCOS中差异表达的lncRNA可作为ceRNA调控靶基因进而影响卵巢颗粒细胞增殖、卵母细胞成熟以及激素合成,这对PCOS的发生发展起到重要作用。综述lncRNA作为ceRNA在PCOS发生发展中的作用。
代鹤琦, 毛菲, 冯睿芝, 钱云. lncRNA作为ceRNA在多囊卵巢综合征中的作用[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 144-149.
DAI He-qi, MAO Fei, FENG Rui-zhi, QIAN Yun. The Role of LncRNA as CeRNA in Polycystic Ovary Syndrome[J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 144-149.
[1] | Wang QY, Song Y, Huang W, et al. Comparison of Drospirenone- with Cyproterone Acetate-Containing Oral Contraceptives, Combined with Metformin and Lifestyle Modifications in Women with Polycystic Ovary Syndrome and Metabolic Disorders: A Prospective Randomized Control Trial[J]. Chin Med J(Engl), 2016, 129(8):883-890. doi: 10.4103/0366-6999.179783. |
[2] | De Leo V, Musacchio MC, Cappelli V, et al. Genetic, hormonal and metabolic aspects of PCOS: an update[J]. Reprod Biol Endocrinol, 2016, 14(1):38. doi: 10.1186/s12958-016-0173-x. |
[3] | Harada M. Pathophysiology of polycystic ovary syndrome revisited: Current understanding and perspectives regarding future research[J]. Reprod Med Biol, 2022, 21(1):e12487. doi: 10.1002/rmb2.12487. |
[4] |
Yin W, Falconer H, Yin L, et al. Association Between Polycystic Ovary Syndrome and Cancer Risk[J]. JAMA Oncol, 2019, 5(1):106-107. doi: 10.1001/jamaoncol.2018.5188.
pmid: 30489606 |
[5] |
Banaszewska B, Pawelczyk L, Spaczynski R. Current and future aspects of several adjunctive treatment strategies in polycystic ovary syndrome[J]. Reprod Biol, 2019, 19(4):309-315. doi: 10.1016/j.repbio.2019.09.006.
pmid: 31606349 |
[6] | Hashemi M, Moosavi MS, Abed HM, et al. Long non-coding RNA (lncRNA) H19 in human cancer: From proliferation and metastasis to therapy[J]. Pharmacol Res, 2022,184:106418. doi: 10.1016/j.phrs.2022.106418. |
[7] | Mattick JS, Amaral PP, Carninci P, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations[J]. Nat Rev Mol Cell Biol, 2023, 24(6):430-447. doi: 10.1038/s41580-022-00566-8. |
[8] |
Palazzo AF, Koonin EV. Functional Long Non-coding RNAs Evolve from Junk Transcripts[J]. Cell, 2020, 183(5):1151-1161. doi: 10.1016/j.cell.2020.09.047.
pmid: 33068526 |
[9] | Dhanoa JK, Sethi RS, Verma R, et al. Long non-coding RNA: its evolutionary relics and biological implications in mammals: a review[J]. J Anim Sci Technol, 2018,60:25. doi: 10.1186/s40781-018-0183-7. |
[10] | Statello L, Guo CJ, Chen LL, et al. Gene regulation by long non-coding RNAs and its biological functions[J]. Nat Rev Mol Cell Biol, 2021, 22(2):96-118. doi: 10.1038/s41580-020-00315-9. |
[11] | Abbasifard M, Kamiab Z, Bagheri-Hosseinabadi Z, et al. The role and function of long non-coding RNAs in osteoarthritis[J]. Exp Mol Pathol, 2020,114:104407. doi: 10.1016/j.yexmp.2020.104407. |
[12] |
Salmena L, Poliseno L, Tay Y, et al. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?[J]. Cell, 2011, 146(3):353-358. doi: 10.1016/j.cell.2011.07.014.
pmid: 21802130 |
[13] |
Mullany LE, Herrick JS, Wolff RK, et al. Impact of polymorphisms in microRNA biogenesis genes on colon cancer risk and microRNA expression levels: a population-based, case-control study[J]. BMC Med Genomics, 2016, 9(1):21. doi: 10.1186/s12920-016-0181-x.
pmid: 27107574 |
[14] |
Zhao H, He Y, Li H, et al. The opposite role of alternatively spliced isoforms of LINC00477 in gastric cancer[J]. Cancer Manag Res, 2019, 11:4569-4576. doi: 10.2147/CMAR.S202430.
pmid: 31191018 |
[15] | Gao H, Jiang J, Shi Y, et al. The LINC00477/miR-128 axis promotes the progression of polycystic ovary syndrome by regulating ovarian granulosa cell proliferation and apoptosis[J]. Reprod Biol Endocrinol, 2021, 19(1):29. doi: 10.1186/s12958-021-00718-z. |
[16] | Das M, Djahanbakhch O, Hacihanefioglu B, et al. Granulosa cell survival and proliferation are altered in polycystic ovary syndrome[J]. J Clin Endocrinol Metab, 2008, 93(3):881-887. doi: 10.1210/jc.2007-1650. |
[17] |
Jiang B, Xue M, Xu D, et al. Down-regulated lncRNA HOTAIR alleviates polycystic ovaries syndrome in rats by reducing expression of insulin-like growth factor 1 via microRNA-130a[J]. J Cell Mol Med, 2020, 24(1):451-464. doi: 10.1111/jcmm.14753.
pmid: 31733099 |
[18] | Hasegawa T, Kamada Y, Hosoya T, et al. A regulatory role of androgen in ovarian steroidogenesis by rat granulosa cells[J]. J Steroid Biochem Mol Biol, 2017, 172:160-165. doi: 10.1016/j.jsbmb.2017.07.002. |
[19] |
Mani AM, Fenwick MA, Cheng Z, et al. IGF1 induces up-regulation of steroidogenic and apoptotic regulatory genes via activation of phosphatidylinositol-dependent kinase/AKT in bovine granulosa cells[J]. Reproduction, 2010, 139(1):139-151. doi: 10.1530/REP-09-0050.
pmid: 19819918 |
[20] | Batista JG, Soares JM Jr, Maganhin CC, et al. Assessing the benefits of rosiglitazone in women with polycystic ovary syndrome through its effects on insulin-like growth factor 1, insulin-like growth factor-binding protein-3 and insulin resistance: a pilot study[J]. Clinics(Sao Paulo), 2012, 67(3):283-287. doi: 10.6061/clinics/2012(03)14. |
[21] |
Wawrzik M, Spiess AN, Herrmann R, et al. Expression of SNURF-SNRPN upstream transcripts and epigenetic regulatory genes during human spermatogenesis[J]. Eur J Hum Genet, 2009, 17(11):1463-1470. doi: 10.1038/ejhg.2009.83.
pmid: 19471314 |
[22] | Huang X, Pan J, Wu B, et al. Construction and analysis of a lncRNA (PWRN2)-mediated ceRNA network reveal its potential roles in oocyte nuclear maturation of patients with PCOS[J]. Reprod Biol Endocrinol, 2018, 16(1):73. doi: 10.1186/s12958-018-0392-4. |
[23] | Batrakou DG, de Las Heras JI, Czapiewski R, et al. TMEM120A and B: Nuclear Envelope Transmembrane Proteins Important for Adipocyte Differentiation[J]. PLoS One, 2015, 10(5):e0127712. doi: 10.1371/journal.pone.0127712. |
[24] | Machtinger R, Combelles CM, Missmer SA, et al. The association between severe obesity and characteristics of failed fertilized oocytes[J]. Hum Reprod, 2012, 27(11):3198-3207. doi: 10.1093/humrep/des308. |
[25] | Zhang Y, Mi L, Xuan Y, et al. LncRNA HOTAIRM1 inhibits the progression of hepatocellular carcinoma by inhibiting the Wnt signaling pathway[J]. Eur Rev Med Pharmacol Sci, 2018, 22(15):4861-4868. doi: 10.26355/eurrev_201808_15622. |
[26] | Li X, Pang L, Yang Z, et al. LncRNA HOTAIRM1/HOXA1 Axis Promotes Cell Proliferation, Migration And Invasion In Endometrial Cancer[J]. Onco Targets Ther, 2019, 12:10997-11015. doi: 10.2147/OTT.S222334. |
[27] |
Kim CY, Oh JH, Lee JY, et al. The LncRNA HOTAIRM1 Promotes Tamoxifen Resistance by Mediating HOXA1 Expression in ER+ Breast Cancer Cells[J]. J Cancer, 2020, 11(12):3416-3423. doi: 10.7150/jca.38728.
pmid: 32284737 |
[28] |
Guo H, Li T, Sun X. LncRNA HOTAIRM1, miR-433-5p and PIK3CD function as a ceRNA network to exacerbate the development of PCOS[J]. J Ovarian Res, 2021, 14(1):19. doi: 10.1186/s13048-020-00742-4.
pmid: 33485372 |
[29] | Zhao H, Ding F, Zheng G. LncRNA TMPO-AS1 promotes LCN2 transcriptional activity and exerts oncogenic functions in ovarian cancer[J]. FASEB J, 2020, 34(9):11382-11394. doi: 10.1096/fj.201902683R. |
[30] | Mitobe Y, Ikeda K, Suzuki T, et al. ESR1-Stabilizing Long Noncoding RNA TMPO-AS1 Promotes Hormone-Refractory Breast Cancer Progression[J]. Mol Cell Biol, 2019, 39(23):e00261-19. doi: 10.1128/MCB.00261-19. |
[31] |
Hou F, Li J, Peng J, et al. LncRNA TMPO-AS1 suppresses the maturation of miR-335-5p to participate in polycystic ovary syndrome[J]. J Ovarian Res, 2021, 14(1):99. doi: 10.1186/s13048-021-00848-3.
pmid: 34330309 |
[32] |
Yao L, Li M, Hu J, et al. MiRNA-335-5p negatively regulates granulosa cell proliferation via SGK3 in PCOS[J]. Reproduction, 2018, 156(5):439-449. doi: 10.1530/REP-18-0229.
pmid: 30328340 |
[33] |
ElMonier AA, El-Boghdady NA, Fahim SA, et al. LncRNA NEAT1 and MALAT1 are involved in polycystic ovary syndrome pathogenesis by functioning as competing endogenous RNAs to control the expression of PCOS-related target genes[J]. Noncoding RNA Res, 2023, 8(2):263-271. doi: 10.1016/j.ncrna.2023.02.008.
pmid: 36935861 |
[34] | Wu L, Tu Z, Bao Y, et al. Long noncoding RNA NEAT1 decreases polycystic ovary syndrome progression via the modulation of the microRNA-324-3p and BRD3 axis[J]. Cell Biol Int, 2022, 46(12):2075-2084. doi: 10.1002/cbin.11893. |
[35] | Jiang YC, Ma JX. The role of MiR-324-3p in polycystic ovary syndrome (PCOS) via targeting WNT2B[J]. Eur Rev Med Pharmacol Sci, 2018, 22(11):3286-3293. doi: 10.26355/eurrev_201806_15147. |
[36] | Zheng Y, Lv P, Wang S, et al. LncRNA PLAC2 upregulates p53 to induce hepatocellular carcinoma cell apoptosis[J]. Gene, 2019, 712:143944. doi: 10.1016/j.gene.2019.143944. |
[37] | Li G, Wang Y, Wang J, et al. Long non-coding RNA placenta-specific protein 2 regulates micorRNA-19a/tumor necrosis factor α to participate in polycystic ovary syndrome[J]. Bioengineered, 2022, 13(1):856-862. doi: 10.1080/21655979.2021.2013722. |
[38] |
Mohammadi S, Kayedpoor P, Karimzadeh-Bardei L, et al. The Effect of Curcumin on TNF-α, IL-6 and CRP Expression in a Model of Polycystic Ovary Syndrome as an Inflammation State[J]. J Reprod Infertil, 2017, 18(4):352-360.
pmid: 29201665 |
[39] | Zhu HL, Chen YQ, Zhang ZF. Downregulation of lncRNA ZFAS1 and upregulation of microRNA-129 repress endocrine disturbance, increase proliferation and inhibit apoptosis of ovarian granulosa cells in polycystic ovarian syndrome by downregulating HMGB1[J]. Genomics, 2020, 112(5):3597-3608. doi: 10.1016/j.ygeno.2020.04.011. |
[40] |
Hu Y, Lin J, Fang H, et al. Targeting the MALAT1/PARP1/LIG3 complex induces DNA damage and apoptosis in multiple myeloma[J]. Leukemia, 2018, 32(10):2250-2262. doi: 10.1038/s41375-018-0104-2.
pmid: 29632340 |
[41] |
Fu S, Wang Y, Li H, et al. Regulatory Networks of LncRNA MALAT-1 in Cancer[J]. Cancer Manag Res, 2020, 12:10181-10198. doi: 10.2147/CMAR.S276022.
pmid: 33116873 |
[42] | Liu YD, Li Y, Feng SX, et al. Long Noncoding RNAs: Potential Regulators Involved in the Pathogenesis of Polycystic Ovary Syndrome[J]. Endocrinology, 2017, 158(11):3890-3899. doi: 10.1210/en.2017-00605. |
[43] | Chen Y, Chen Y, Cui X, et al. Down-regulation of MALAT1 aggravates polycystic ovary syndrome by regulating MiR-302d-3p-mediated leukemia inhibitory factor activity[J]. Life Sci, 2021, 277:119076. doi: 10.1016/j.lfs.2021.119076. |
[44] | Zhao T, Pan Y, Li Q, et al. Leukemia inhibitory factor enhances the development and subsequent blastocysts quality of yak oocytes in vitro[J]. Front Vet Sci, 2022,9:997709. doi: 10.3389/fvets.2022.997709. |
[45] |
Kara M, Ozcan SS, Aran T, et al. Evaluation of Endometrial Receptivity by Measuring HOXA-10, HOXA-11, and Leukemia Inhibitory Factor Expression in Patients with Polycystic Ovary Syndrome[J]. Gynecol Minim Invasive Ther, 2019, 8(3):118-122. doi: 10.4103/GMIT.GMIT_112_18.
pmid: 31544022 |
[46] | Zhang D, Tang HY, Tan L, et al. MALAT1 is involved in the pathophysiological process of PCOS by modulating TGFβ signaling in granulosa cells[J]. Mol Cell Endocrinol, 2020,499:110589. doi: 10.1016/j.mce.2019.110589. |
[1] | 白若妍, 王炎强, 陈京霞. 绝经后女性宫内节育器相关卵巢脓肿术后继发脑脓肿一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 485-489. |
[2] | 李安琪, 朱梦一, 王宇, 高敬书, 吴效科. 丹参酮在多囊卵巢综合征治疗中的潜在价值及其机制[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 494-500. |
[3] | 雷瑞祥, 万怡, 李钰滋, 关德凤, 张学红. 昼夜节律紊乱与多囊卵巢综合征的关系[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 501-505. |
[4] | 乔新月, 陶爱琳, 冯晓玲, 陈璐. 多囊卵巢综合征伴焦虑、抑郁障碍的相关性研究[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 506-511. |
[5] | 田德吉尔, 冯晓玲. 肌肉肌醇与D-手性肌醇在多囊卵巢综合征中的研究及应用[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 512-517. |
[6] | 张睿妍, 邓涵瑜, 陈柯欣, 马梲铫, 刘悦, 丁之德. 附睾小体调节精子成熟和父系表观遗传的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 518-523. |
[7] | 杨琴, 王涵婷, 曹媛媛, 周军, 王桂玲. 白藜芦醇对卵巢颗粒细胞功能的调节[J]. 国际生殖健康/计划生育杂志, 2024, 43(6): 524-528. |
[8] | 高征, 李梦元, 李博, 梁婧翘, 张雅冬, 许昕. 中药复方干预肥胖型多囊卵巢综合征糖脂代谢异常的Meta分析[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 368-377. |
[9] | 朱海英, 齐丹丹, 孙平平, 孙娜, 栾素娴. 辅助生殖技术助孕后卵巢过度刺激综合征合并卵巢扭转一例[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 401-405. |
[10] | 李轩昂, 王婷婷, 相珊, 赵帅, 连方. 铁死亡在多囊卵巢综合征中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 425-429. |
[11] | 徐晓燕, 王笑璇. 卵巢妊娠破裂三例诊疗体会[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 309-312. |
[12] | 焦梦文, 张月文, 王玲, 莫少康. 环状RNA在生殖系统的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 322-327. |
[13] | 李丹萍, 连方, 相珊. 二甲双胍治疗多囊卵巢综合征的机制研究新进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 343-347. |
[14] | 王冬雪, 包莉莉, 刘珊, 杨波. 改良灵活拮抗剂方案对卵巢功能正常女性COH结局的影响[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 185-189. |
[15] | 刘书杰, 李明泽, 张海燕. 卵巢中-低分化支持-间质细胞瘤一例并文献复习[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 207-211. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||