[1] |
Luo XF, Huang C, Ji XR, et al. Micro-straw: An efficient cryopreservation carrier for rare human spermatozoa[J]. Andrology, 2022, 10(4):710-719. doi: 10.1111/andr.13164.
|
[2] |
Ohno M, Tanaka A, Nagayoshi M, et al. Modified permeable cryoprotectant-free vitrification method for three or fewer ejaculated spermatozoa from cryptozoospermic men and 7-year follow-up study of 14 children born from this method[J]. Hum Reprod, 2020, 35(5):1019-1028. doi: 10.1093/humrep/deaa072.
|
[3] |
Auth CA, Hopkins BK. Nitrogen vapor immersion: An accessible alternative for honey bee (Apis mellifera L.) semen cryopreservation[J]. Cryobiology, 2021, 100:12-18. doi: 10.1016/j.cryobiol.2021.04.006.
|
[4] |
Peng QP, Cao SF, Lyu QF, et al. A novel method for cryopreservation of individual human spermatozoa[J]. In Vitro Cell Dev Biol Anim, 2011, 47(8):565-572. doi: 10.1007/s11626-011-9428-1.
|
[5] |
Herbemont C, Mnallah S, Bennani-Smires B, et al. Cryopreservation of small numbers of human spermatozoa in a Stripper tip: Report of the first live-birth worldwide[J]. Cryobiology, 2021, 99:103-105. doi: 10.1016/j.cryobiol.2021.01.005.
pmid: 33400960
|
[6] |
Belenky M, Itzhakov D, Freger V, et al. Optimizing the protocol for vitrification of individual spermatozoa by adjusting equilibration time[J]. Syst Biol Reprod Med, 2020, 66(3):223-228. doi: 10.1080/19396368.2020.1737271.
pmid: 32208003
|
[7] |
Jiang LY, Kong FF, Yao L, et al. A novel solution for freezing individual spermatozoa using a right angular cryopiece embedded in a grooved petri dish[J]. Andrologia, 2022, 54(11):e14619. doi: 10.1111/and.14619.
|
[8] |
Hughes G, Martins da Silva S. Sperm cryopreservation for impaired spermatogenesis[J]. Reprod Fertil, 2022, 4(1):e220106. doi: 10.1530/RAF-22-0106.
|
[9] |
Blommaert D, Franck T, Donnay I, et al. Substitution of egg yolk by a cyclodextrin-cholesterol complex allows a reduction of the glycerol concentration into the freezing medium of equine sperm[J]. Cryobiology, 2016, 72(1):27-32. doi: 10.1016/j.cryobiol.2015.11.008.
pmid: 26687387
|
[10] |
Zandiyeh S, Shahverdi A, Ebrahimi B, et al. A novel approach for human sperm cryopreservation with AFPⅢ[J]. Reprod Biol, 2020, 20(2):169-174. doi: 10.1016/j.repbio.2020.03.006.
pmid: 32279880
|
[11] |
Sun L, He M, Wu C, et al. Beneficial Influence of Soybean Lecithin Nanoparticles on Rooster Frozen-Thawed Semen Quality and Fertility[J]. Animals(Basel), 2021, 11(6):1769. doi: 10.3390/ani11061769.
|
[12] |
Khodaei-Motlagh M, Masoudi R, Karimi-Sabet MJ, et al. Supplementation of sperm cooling medium with Zinc and Zinc oxide nanoparticles preserves rooster sperm quality and fertility potential[J]. Theriogenology, 2022, 183:36-40. doi: 10.1016/j.theriogenology.2022.02.015.
pmid: 35193058
|
[13] |
Correia L, Espírito-Santo CG, Braga RF, et al. Addition of antifreeze protein typeⅠorⅢto extenders for ram sperm cryopreservation[J]. Cryobiology, 2021, 98:194-200. doi: 10.1016/j.cryobiol.2020.11.001.
|
[14] |
Qadeer S, Khan MA, Ansari MS, et al. A Novel Recombinant Eel Pout (Macrozoarces americans) TypeⅢAntifreeze Protein Improves Cryosurvival of Buffalo Sperm[J]. Cryo Letters, 2019, 40(6):347-351.
pmid: 33966061
|
[15] |
Masuda Y, Kheawkanha T, Nagahama A, et al. Antifreeze protein typeⅢaddition to freezing extender comprehensively improves post-thaw sperm properties in Okinawan native Agu pig[J]. Anim Reprod Sci, 2023, 252:107232. doi: 10.1016/j.anireprosci.2023.107232.
|
[16] |
Nadri T, Towhidi A, Zeinoaldini S, et al. Lecithin nanoparticles enhance the cryosurvival of caprine sperm[J]. Theriogenology, 2019, 133:38-44. doi: 10.1016/j.theriogenology.2019.04.024.
pmid: 31055160
|
[17] |
Shahin MA, Khalil WA, Saadeldin IM, et al. Comparison between the Effects of Adding Vitamins, Trace Elements, and Nanoparticles to SHOTOR Extender on the Cryopreservation of Dromedary Camel Epididymal Spermatozoa[J]. Animals(Basel), 2020, 10(1):78. doi: 10.3390/ani10010078.
|
[18] |
Hosseinmardi M, Siadat F, Sharafi M, et al. Protective Effect of Cerium Oxide Nanoparticles on Human Sperm Function During Cryopreservation[J]. Biopreserv Biobank, 2022, 20(1):24-30. doi: 10.1089/bio.2021.0020.
|
[19] |
Ghafarizadeh A, Malmir M, Naderi Noreini S, et al. Antioxidant effects of N-acetylcysteine on the male reproductive system: A systematic review[J]. Andrologia, 2021, 53(1):e13898. doi: 10.1111/and.13898.
|
[20] |
Jannatifar R, Asa E, Sahraei SS, et al. N-acetyl-l-cysteine and alpha lipoic acid are protective supplement on human sperm parameters in cryopreservation of asthenoteratozoospermia patients[J]. Andrologia, 2022, 54(11):e14612. doi: 10.1111/and.14612.
|
[21] |
Ghantabpour T, Nashtaei MS, Nekoonam S, et al. The Effect of Astaxanthin on Motility, Viability, Reactive Oxygen Species, Apoptosis, and Lipid Peroxidation of Human Spermatozoa During the Freezing-Thawing Process[J]. Biopreserv Biobank, 2022, 20(4):367-373. doi: 10.1089/bio.2021.0112.
pmid: 35984938
|
[22] |
Vazquez-Levin MH, Verón GL. Myo-inositol in health and disease: its impact on semen parameters and male fertility[J]. Andrology, 2020, 8(2):277-298. doi: 10.1111/andr.12718.
pmid: 31637826
|
[23] |
Azizi M, Cheraghi E, Soleimani Mehranjani M. Effect of Myo-inositol on sperm quality and biochemical factors in cryopreserved semen of patients with Asthenospermia[J]. Andrologia, 2022, 54(10):e14528. doi: 10.1111/and.14528.
|
[24] |
Bahmyari R, Zare M, Sharma R, et al. The efficacy of antioxidants in sperm parameters and production of reactive oxygen species levels during the freeze-thaw process: A systematic review and meta-analysis[J]. Andrologia, 2020, 52(3):e13514. doi: 10.1111/and.13514.
|
[25] |
Rahiminia T, Hosseini A, Anvari M, et al. Modern human sperm freezing: Effect on DNA, chromatin and acrosome integrity[J]. Taiwan J Obstet Gynecol, 2017, 56(4):472-476. doi: 10.1016/j.tjog.2017.02.004.
pmid: 28805603
|
[26] |
Li YX, Zhou L, Lv MQ, et al. Vitrification and conventional freezing methods in sperm cryopreservation: A systematic review and meta-analysis[J]. Eur J Obstet Gynecol Reprod Biol, 2019, 233:84-92. doi: 10.1016/j.ejogrb.2018.11.028.
|
[27] |
Wang M, Todorov P, Wang W, et al. Cryoprotectants-Free Vitrification and Conventional Freezing of Human Spermatozoa: A Comparative Transcript Profiling[J]. Int J Mol Sci, 2022, 23(6):3047. doi: 10.3390/ijms23063047.
|
[28] |
Arciero V, Ammar O, Maggi M, et al. Vapour fast freezing with low semen volumes can highly improve motility and viability or DNA quality of cryopreserved human spermatozoa[J]. Andrology, 2022, 10(6):1123-1133. doi: 10.1111/andr.13208.
|
[29] |
Maleki B, Khalili MA, Gholizadeh L, et al. Single sperm vitrification with permeable cryoprotectant-free medium is more effective in patients with severe oligozoospermia and azoospermia[J]. Cryobiology, 2022, 104:15-22. doi: 10.1016/j.cryobiol.2021.11.176.
|
[30] |
Schulz M, Risopatrón J, Matus G, et al. Trehalose sustains a higher post-thaw sperm motility than sucrose in vitrified human sperm[J]. Andrologia, 2017 Nov; 49(9). doi: 10.1111/and.12757.
|
[31] |
Ali Mohamed MS. Slow cryopreservation is not superior to vitrification in human spermatozoa; an experimental controlled study[J]. Iran J Reprod Med, 2015, 13(10):633-644.
pmid: 26644792
|
[32] |
Zhu J, Jin RT, Wu LM, et al. Cryoprotectant-free ultra-rapid freezing of human spermatozoa in cryogenic vials[J]. Andrologia, 2014, 46(6):642-649. doi: 10.1111/and.12131.
pmid: 23822810
|
[33] |
Pabón D, Meseguer M, Sevillano G, et al. A new system of sperm cryopreservation: evaluation of survival, motility, DNA oxidation, and mitochondrial activity[J]. Andrology, 2019, 7(3):293-301. doi: 10.1111/andr.12607.
pmid: 30916488
|
[34] |
Schulz M, Risopatrón J, Uribe P, et al. Human sperm vitrification: A scientific report[J]. Andrology, 2020, 8(6):1642-1650. doi: 10.1111/andr.12847.
|
[35] |
张洲, 杨杰, 孙莹璞, 等. 自身精子冷冻保存的中国专家共识[J]. 生殖医学杂志, 2023, 32(3):316-322. doi: 10.3969/j.issn.1004-3845.2023.03.003.
|