国际生殖健康/计划生育杂志 ›› 2024, Vol. 43 ›› Issue (3): 228-233.doi: 10.12280/gjszjk.20240080
收稿日期:
2024-02-18
出版日期:
2024-05-15
发布日期:
2024-05-14
通讯作者:
王晓红,E-mail:作者简介:
△审校者
基金资助:
LIANG Yue, DONG Jie, XIAO Xi-feng, WANG Xiao-hong△()
Received:
2024-02-18
Published:
2024-05-15
Online:
2024-05-14
Contact:
WANG Xiao-hong. E-mail: 摘要:
微小RNA(microRNA,miRNA)可调控细胞的增殖、分化、凋亡和代谢等生物过程,参与生物的生殖发育过程。作为let-7家族的一员,miR-202具有高度保守的碱基序列,提示miR-202在不同物种中的功能和调控作用可能相似。其可参与多种机体的病理生理过程,如减缓肿瘤细胞的增殖、迁移和侵袭,调控T细胞分化,参与调控神经发育和神经退行性疾病。还可参与配子的发生与成熟,调控生殖生理过程。综述miR-202在精子发生、卵泡发育及生殖内分泌中的调控作用。
梁越, 董杰, 肖西峰, 王晓红. miR-202在生殖调控中的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(3): 228-233.
LIANG Yue, DONG Jie, XIAO Xi-feng, WANG Xiao-hong. Advancements of MiR-202 in Reproductive Modulation[J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 228-233.
物种 | miRNA名称 | 碱基序列 | 碱基长度(bp) | miRBase Acession number* |
---|---|---|---|---|
人 | hsa-miR-202-3p | AGAGGUAUAGGGCAUGGGAA | 20 | MIMAT0002811 |
hsa-miR-202-5p | UUCCUAUGCAUAUACUUCUUUG | 22 | MIMAT0002810 | |
小鼠 | mmu-miR-202-3p | AGAGGUAUAGCGCAUGGGAAGA | 22 | MIMAT0000235 |
mmu-miR-202-5p | UUCCUAUGCAUAUACUUCUUU | 21 | MIMAT0004546 | |
牛 | bta-miR-202 | UUCCUAUGCAUAUACUUCUUU | 21 | MIMAT0009259 |
斑马鱼 | dre-miR-202-3p | AGAGGCAUAGGGCAUGGGAAAA | 22 | MIMAT0001864 |
dre-miR-202-5p | UUCCUAUGCAUAUACCUCUUUG | 22 | MIMAT0003406 | |
红原鸡 | gga-miR-202-3p | AGAGGCAUAGAGCAUGGGAAAA | 22 | MIMAT0003355 |
gga-miR-202-5p | UUUCCUAUGCAUAUACUUCUUU | 22 | MIMAT0003354 |
表1 miR-202在常见物种的序列示意
物种 | miRNA名称 | 碱基序列 | 碱基长度(bp) | miRBase Acession number* |
---|---|---|---|---|
人 | hsa-miR-202-3p | AGAGGUAUAGGGCAUGGGAA | 20 | MIMAT0002811 |
hsa-miR-202-5p | UUCCUAUGCAUAUACUUCUUUG | 22 | MIMAT0002810 | |
小鼠 | mmu-miR-202-3p | AGAGGUAUAGCGCAUGGGAAGA | 22 | MIMAT0000235 |
mmu-miR-202-5p | UUCCUAUGCAUAUACUUCUUU | 21 | MIMAT0004546 | |
牛 | bta-miR-202 | UUCCUAUGCAUAUACUUCUUU | 21 | MIMAT0009259 |
斑马鱼 | dre-miR-202-3p | AGAGGCAUAGGGCAUGGGAAAA | 22 | MIMAT0001864 |
dre-miR-202-5p | UUCCUAUGCAUAUACCUCUUUG | 22 | MIMAT0003406 | |
红原鸡 | gga-miR-202-3p | AGAGGCAUAGAGCAUGGGAAAA | 22 | MIMAT0003355 |
gga-miR-202-5p | UUUCCUAUGCAUAUACUUCUUU | 22 | MIMAT0003354 |
[1] |
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, et al. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods[J]. J Cell Physiol, 2019, 234(5):5451-5465. doi: 10.1002/jcp.27486.
pmid: 30471116 |
[2] |
Shang R, Lee S, Senavirathne G, et al. microRNAs in action: biogenesis, function and regulation[J]. Nat Rev Genet, 2023, 24(12):816-833. doi: 10.1038/s41576-023-00611-y.
pmid: 37380761 |
[3] |
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5):843-854. doi: 10.1016/0092-8674(93)90529-y.
pmid: 8252621 |
[4] | Liu W, Chen J, Yang C, et al. Expression of microRNA let-7 in cleavage embryos modulates cell fate determination and formation of mouse blastocysts[J]. Biol Reprod, 2022, 107(6):1452-1463. doi: 10.1093/biolre/ioac181. |
[5] | Wang Y, Zhao J, Chen S, et al. Let-7 as a Promising Target in Aging and Aging-Related Diseases: A Promise or a Pledge[J]. Biomolecules, 2022, 12(8):1070. doi: 10.3390/biom12081070. |
[6] | Ahmed EA, Rajendran P, Scherthan H. The microRNA-202 as a Diagnostic Biomarker and a Potential Tumor Suppressor[J]. Int J Mol Sci, 2022, 23(11):5870. doi: 10.3390/ijms23115870. |
[7] | Chen J, Yin J, Liu J, et al. MiR-202-3p functions as a tumor suppressor and reduces cell migration and invasion in papillary thyroid carcinoma[J]. Eur Rev Med Pharmacol Sci, 2019, 23(3):1145-1150. doi: 10.26355/eurrev_201902_17005. |
[8] | Lin Y, Chen Z, Lin S, et al. MiR-202 inhibits the proliferation and invasion of colorectal cancer by targeting UHRF1[J]. Acta Biochim Biophys Sin(Shanghai), 2019, 51(6):598-606. doi: 10.1093/abbs/gmz042. |
[9] | Yu HY, Pan SS. MiR-202-5p suppressed cell proliferation, migration and invasion in ovarian cancer via regulating HOXB2[J]. Eur Rev Med Pharmacol Sci, 2020, 24(5):2256-2263. doi:10.26355/eurrev_202003_20491. |
[10] | Wang L, Liu X, Song X, et al. MiR-202-5p Promotes M2 Polarization in Allergic Rhinitis by Targeting MATN2[J]. Int Arch Allergy Immunol, 2019, 178(2):119-127. doi: 10.1159/000493803. |
[11] |
Wang L, Yang X, Li W, et al. MiR-202-5p/MATN2 are associated with regulatory T-cells differentiation and function in allergic rhinitis[J]. Hum Cell, 2019, 32(4):411-417. doi: 10.1007/s13577-019-00266-0.
pmid: 31493245 |
[12] | Li B, Huang Z, Meng J, et al. MiR-202-5p attenuates neurological deficits and neuronal injury in MCAO model rats and OGD-induced injury in Neuro-2a cells by targeting eIF4E-mediated induction of autophagy and inhibition of Akt/GSK-3β pathway[J]. Mol Cell Probes, 2020, 51:101497. doi: 10.1016/j.mcp.2019.101497. |
[13] | Li Y, Liu L, Ding X, et al. Interleukin-1β attenuates the proliferation and differentiation of oligodendrocyte precursor cells through regulation of the microRNA-202-3p/β-catenin/Gli1 axis[J]. Int J Mol Med, 2020, 46(3):1217-1224. doi: 10.3892/ijmm.2020.4648. |
[14] | Li Y, Li Q, Zhang O, et al. miR-202-5p protects rat against myocardial ischemia reperfusion injury by downregulating the expression of Trpv2 to attenuate the Ca2+ overload in cardiomyocytes[J]. J Cell Biochem, 2019, 120(8):13680-13693. doi: 10.1002/jcb.28641. |
[15] | Wu HY, Wu JL, Ni ZL. Overexpression of microRNA-202-3p protects against myocardial ischemia-reperfusion injury through activation of TGF-β1/Smads signaling pathway by targeting TRPM6[J]. Cell Cycle, 2019, 18(5):621-637. doi: 10.1080/15384101.2019.1580494. |
[16] |
Li L, Wu F, Xie Y, et al. MiR-202-3p Inhibits Foam Cell Formation and is Associated with Coronary Heart Disease Risk in a Chinese Population[J]. Int Heart J, 2020, 61(1):153-159. doi: 10.1536/ihj.19-033.
pmid: 31956131 |
[17] | Chen J, Gao C, Luo M, et al. MicroRNA-202 safeguards meiotic progression by preventing premature SEPARASE-mediated REC8 cleavage[J]. EMBO Rep, 2022, 23(8):e54298. doi: 10.15252/embr.202154298. |
[18] |
Janati-Idrissi S, de Abreu MR, Guyomar C, et al. Looking for a needle in a haystack: de novo phenotypic target identification reveals Hippo pathway-mediated miR-202 regulation of egg production[J]. Nucleic Acids Res, 2024, 52(2):738-754. doi: 10.1093/nar/gkad1154.
pmid: 38059397 |
[19] |
Reza A, Choi YJ, Han SG, et al. Roles of microRNAs in mammalian reproduction: from the commitment of germ cells to peri-implantation embryos[J]. Biol Rev Camb Philos Soc, 2019, 94(2):415-438. doi: 10.1111/brv.12459.
pmid: 30151880 |
[20] | Ge RS, Li X, Wang Y. Leydig Cell and Spermatogenesis[J]. Adv Exp Med Biol, 2021, 1288:111-129. doi: 10.1007/978-3-030-77779-1_6. |
[21] | Klees C, Alexandri C, Demeestere I, et al. The Role of microRNA in Spermatogenesis: Is There a Place for Fertility Preservation Innovation?[J]. Int J Mol Sci, 2023, 25(1):460. doi: 10.3390/ijms25010460. |
[22] | Thumfart KM, Mansuy IM. What are Sertoli cells? Historical, methodological, and functional aspects[J]. Andrology, 2023, 11(5):849-859. doi: 10.1111/andr.13386. |
[23] | Peng YJ, Tang XT, Shu HS, et al. Sertoli cells are the source of stem cell factor for spermatogenesis[J]. Development, 2023, 150(6):dev200706. doi: 10.1242/dev.200706. |
[24] | Mohammed BT, Donadeu FX. Localization and in silico-based functional analysis of miR-202 in bull testis[J]. Reprod Domest Anim, 2022, 57(9):1082-1087. doi: 10.1111/rda.14159. |
[25] |
Wang X, Liu X, Qu M, et al. Sertoli cell-only syndrome: advances, challenges, and perspectives in genetics and mechanisms[J]. Cell Mol Life Sci, 2023, 80(3):67. doi: 10.1007/s00018-023-04723-w.
pmid: 36814036 |
[26] |
Dabaja AA, Mielnik A, Robinson BD, et al. Possible germ cell-Sertoli cell interactions are critical for establishing appropriate expression levels for the Sertoli cell-specific MicroRNA, miR-202-5p, in human testis[J]. Basic Clin Androl, 2015, 25:2. doi: 10.1186/s12610-015-0018-z.
pmid: 25780590 |
[27] | Yang C, Yao C, Tian R, et al. miR-202-3p Regulates Sertoli Cell Proliferation, Synthesis Function, and Apoptosis by Targeting LRP6 and Cyclin D1 of Wnt/β-Catenin Signaling[J]. Mol Ther Nucleic Acids, 2019, 14:1-19. doi: 10.1016/j.omtn.2018.10.012. |
[28] | Chen J, Gao C, Lin X, et al. The microRNA miR-202 prevents precocious spermatogonial differentiation and meiotic initiation during mouse spermatogenesis[J]. Development, 2021, 148(24):dev199799. doi: 10.1242/dev.199799. |
[29] |
Bannister SC, Smith CA, Roeszler KN, et al. Manipulation of estrogen synthesis alters MIR202* expression in embryonic chicken gonads[J]. Biol Reprod, 2011, 85(1):22-30. doi: 10.1095/biolreprod.110.088476.
pmid: 21389341 |
[30] |
Wainwright EN, Jorgensen JS, Kim Y, et al. SOX9 regulates microRNA miR-202-5p/3p expression during mouse testis differentiation[J]. Biol Reprod, 2013, 89(2):34. doi: 10.1095/biolreprod.113.110155.
pmid: 23843232 |
[31] |
Zhang Y, Yan Z, Qin Q, et al. Transcriptome Landscape of Human Folliculogenesis Reveals Oocyte and Granulosa Cell Interactions[J]. Mol Cell, 2018, 72(6):1021-1034.e4. doi: 10.1016/j.molcel.2018.10.029.
pmid: 30472193 |
[32] | Guo X, Zhu Y, Guo L, et al. BCAA insufficiency leads to premature ovarian insufficiency via ceramide-induced elevation of ROS[J]. EMBO Mol Med, 2023, 15(4):e17450. doi: 10.15252/emmm.202317450. |
[33] |
Saucedo-Cuevas L, Ivanova E, Herta AC, et al. Genome-wide assessment of DNA methylation alterations induced by superovulation, sexual immaturity and in vitro follicle growth in mouse blastocysts[J]. Clin Epigenetics, 2023, 15(1):9. doi: 10.1186/s13148-023-01421-z.
pmid: 36647174 |
[34] |
Armisen J, Gilchrist MJ, Wilczynska A, et al. Abundant and dynamically expressed miRNAs, piRNAs, and other small RNAs in the vertebrate Xenopus tropicalis[J]. Genome Res, 2009, 19(10):1766-1775. doi: 10.1101/gr.093054.109.
pmid: 19628731 |
[35] | Donadeu FX, Schauer SN. Differential miRNA expression between equine ovulatory and anovulatory follicles[J]. Domest Anim Endocrinol, 2013, 45(3):122-125. doi: 10.1016/j.domaniend.2013.06.006. |
[36] | Sontakke SD, Mohammed BT, McNeilly AS, et al. Characterization of microRNAs differentially expressed during bovine follicle development[J]. Reproduction, 2014, 148(3):271-283. doi: 10.1530/REP-14-0140. |
[37] |
Xie S, Batnasan E, Zhang Q, et al. MicroRNA Expression is Altered in Granulosa Cells of Ovarian Hyperresponders[J]. Reprod Sci, 2016, 23(8):1001-1010. doi: 10.1177/1933719115625849.
pmid: 26763554 |
[38] | Machtinger R, Rodosthenous RS, Adir M, et al. Extracellular microRNAs in follicular fluid and their potential association with oocyte fertilization and embryo quality: an exploratory study[J]. J Assist Reprod Genet, 2017, 34(4):525-533. doi: 10.1007/s10815-017-0876-8. |
[39] | Li S, Lin G, Fang W, et al. Identification and Comparison of microRNAs in the Gonad of the Yellowfin Seabream (Acanthopagrus Latus)[J]. Int J Mol Sci, 2020, 21(16):5690. doi: 10.3390/ijms21165690. |
[40] | Xu Q, Zhang Y, Chen Y, et al. Identification and differential expression of microRNAs in ovaries of laying and Broody geese (Anser cygnoides) by Solexa sequencing[J]. PLoS One, 2014, 9(2):e87920. doi: 10.1371/journal.pone.0087920. |
[41] | Lu T, Zou X, Liu G, et al. A Preliminary Study on the Characteristics of microRNAs in Ovarian Stroma and Follicles of Chuanzhong Black Goat during Estrus[J]. Genes(Basel), 2020, 11(9):970. doi: 10.3390/genes11090970. |
[42] | Lan K, Shen C, Li J, et al. A novel indel within the bovine SEPT7 gene is associated with ovary length[J]. Anim Biotechnol, 2023, 34(1):8-14. doi: 10.1080/10495398.2021.1929272. |
[43] | Zhou X, He Y, Quan H, et al. HDAC1-Mediated lncRNA Stimulatory Factor of Follicular Development to Inhibit the Apoptosis of Granulosa Cells and Regulate Sexual Maturity through miR-202-3p-COX1 Axis[J]. Cells, 2023, 12(23):2734. doi: 10.3390/cells12232734. |
[44] | Donadeu FX, Sontakke SD, Ioannidis J. MicroRNA indicators of follicular steroidogenesis[J]. Reprod Fertil Dev, 2016 Feb 11. doi: 10.1071/RD15282. Epub ahead of print. |
[45] | Ran M, Hu S, Ouyang Q, et al. miR-202-5p Inhibits Lipid Metabolism and Steroidogenesis of Goose Hierarchical Granulosa Cells by Targeting ACSL3[J]. Animals(Basel), 2023, 13(3):325. doi: 10.3390/ani13030325. |
[46] |
Skaftnesmo KO, Edvardsen RB, Furmanek T, et al. Integrative testis transcriptome analysis reveals differentially expressed miRNAs and their mRNA targets during early puberty in Atlantic salmon[J]. BMC Genomics, 2017, 18(1):801. doi: 10.1186/s12864-017-4205-5.
pmid: 29047327 |
[47] | Dong J, Wang L, Xing Y, et al. Dynamic peripheral blood microRNA expression landscape during the peri-implantation stage in women with successful pregnancy achieved by single frozen-thawed blastocyst transfer[J]. Hum Reprod Open, 2023, 2023(4):hoad034. doi: 10.1093/hropen/hoad034. |
[1] | 李佳丽, 涂许许, 王士萌, 牛丁忍, 冯晓玲. 母胎界面氧化应激与复发性流产[J]. 国际生殖健康/计划生育杂志, 2024, 43(5): 435-440. |
[2] | 焦梦文, 张月文, 王玲, 莫少康. 环状RNA在生殖系统的研究进展[J]. 国际生殖健康/计划生育杂志, 2024, 43(4): 322-327. |
[3] | 楚漫微, 陈欢欢, 王倩, 王祎玟, 李丹, 杨淑珺, 张翠莲. miR-20a在妇科常见恶性肿瘤中的作用机制[J]. 国际生殖健康/计划生育杂志, 2024, 43(2): 172-176. |
[4] | 周昕玥, 张安妮, 张学红. m6A甲基化修饰在生殖相关疾病中的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(5): 392-397. |
[5] | 陈若霖, 张云山. 精子DNA损伤的机制和临床相关性[J]. 国际生殖健康/计划生育杂志, 2023, 42(2): 130-134. |
[6] | 李濛, 吴亚梅, 李佳雯, 郑小敏, 应豪, 黄璐. 胎盘来源外泌体在诊断胎儿生长受限中的应用[J]. 国际生殖健康/计划生育杂志, 2023, 42(2): 156-160. |
[7] | 常天晴, 吴华, 冯睿芝, 钱云. 精子顶体发育相关蛋白的研究进展[J]. 国际生殖健康/计划生育杂志, 2023, 42(1): 44-49. |
[8] | 付旭, 周莹, 顾怡栋, 王家雄, 杨慎敏. 先天性双侧输精管缺如伴生精功能障碍一例[J]. 国际生殖健康/计划生育, 2022, 41(3): 204-206. |
[9] | 王心依, 王治琪, 王珺, 徐琴舟, 夏小雨. 精子领形成及精子领内运输相关蛋白的研究进展[J]. 国际生殖健康/计划生育, 2022, 41(2): 129-134. |
[10] | 李洪菀菀, 杨洁琼, 张丛. 微小RNA在子宫内膜蜕膜化中的功能[J]. 国际生殖健康/计划生育, 2021, 40(6): 476-480. |
[11] | 白银阳, 熊芳, 张昀, 陈洁, 徐丽爽, 汪敏. 围生期低剂量双酚A对子代雄鼠生精功能的影响[J]. 国际生殖健康/计划生育, 2021, 40(5): 353-358. |
[12] | 周志贤, 朱芳, 殷缓, 苏叶, 蔡海奕, 符淳. 哺乳动物卵巢储备形成中的DNA损伤修复[J]. 国际生殖健康/计划生育, 2021, 40(5): 391-396. |
[13] | 张萌卉, 刘笑聪, 郭艺红. m6A动态调控网络在生殖系统中的作用[J]. 国际生殖健康/计划生育, 2021, 40(4): 306-309. |
[14] | 金明昊, 黄文一, 张梦旖, 张一苇, 刘悦, 丁之德. 雄性生殖系统中瘦素表达及功能的研究进展[J]. 国际生殖健康/计划生育, 2021, 40(1): 38-43. |
[15] | 陈丽, 孟昱时. 他莫昔芬在生殖领域的应用进展[J]. 国际生殖健康/计划生育, 2020, 39(6): 509-513. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||