Journal of International Reproductive Health/Family Planning ›› 2023, Vol. 42 ›› Issue (3): 221-225.doi: 10.12280/gjszjk.20220455
• Review • Previous Articles Next Articles
LI Yan, HU Fang-fang, CHEN Huan-huan, ZHANG Lei, ZHANG Cui-lian, LIANG Lin-lin()
Received:
2022-09-21
Published:
2023-05-15
Online:
2023-05-18
Contact:
LIANG Lin-lin
E-mail:21469532@qq.com
LI Yan, HU Fang-fang, CHEN Huan-huan, ZHANG Lei, ZHANG Cui-lian, LIANG Lin-lin. Research Progress of In Vitro Three-Dimensional Culture System of Preantral Follicles[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(3): 221-225.
Add to citation manager EndNote|Ris|BibTeX
[1] |
黄少凤, 牛向丽, 林忠, 等. 卵巢皮质玻璃化冷冻保存及移植的损伤因素[J]. 国际生殖健康/计划生育杂志, 2022, 41(4):308-312. doi: 10.12280/gjszjk.20220115.
doi: 10.12280/gjszjk.20220115 |
[2] |
马聪, 邹慧娟, 王建业, 等. 自体卵巢组织冷冻在女性肿瘤患者生育力保存中的应用[J]. 生殖医学杂志, 2020, 29(5):663-667. doi: 10.3969/j.issn.1004-3845.2020.05.017.
doi: 10.3969/j.issn.1004-3845.2020.05.017 |
[3] |
Guerreiro DD, Mbemya GT, Bruno JB, et al. In vitro culture systems as an alternative for female reproductive toxicology studies[J]. Zygote, 2019, 27(2):55-63. doi: 10.1017/S0967199419000042.
doi: 10.1017/S0967199419000042 pmid: 30871647 |
[4] |
Eppig JJ, O′Brien MJ. Development in vitro of mouse oocytes from primordial follicles[J]. Biol Reprod, 1996, 54(1):197-207. doi: 10.1095/biolreprod54.1.197.
doi: 10.1095/biolreprod54.1.197 pmid: 8838017 |
[5] |
Simon LE, Kumar TR, Duncan FE. In vitro ovarian follicle growth: a comprehensive analysis of key protocol variables?[J]. Biol Reprod, 2020, 103(3):455-470. doi: 10.1093/biolre/ioaa073.
doi: 10.1093/biolre/ioaa073 pmid: 32406908 |
[6] |
Pangas SA, Saudye H, Shea LD, et al. Novel approach for the three-dimensional culture of granulosa cell-oocyte complexes[J]. Tissue Eng, 2003, 9(5):1013-1021. doi: 10.1089/107632703322495655.
doi: 10.1089/107632703322495655 pmid: 14633385 |
[7] |
Correia H, Lima LF, Sousa F, et al. Activation of goat primordial follicles in vitro: Influence of alginate and ovarian tissue[J]. Reprod Domest Anim, 2020, 55(1):105-109. doi: 10.1111/rda.13582.
doi: 10.1111/rda.13582 pmid: 31661715 |
[8] |
Jalili C, Khani Hemmatabadi F, Bakhtiyari M, et al. Effects of Three-Dimensional Sodium Alginate Scaffold on Maturation and Developmental Gene Expressions in Fresh and Vitrified Preantral Follicles of Mice[J]. Int J Fertil Steril, 2021, 15(3):167-177. doi: 10.22074/IJFS.2020.134609.
doi: 10.22074/IJFS.2020.134609 pmid: 34155863 |
[9] |
Jamalzaei P, Rezazadeh Valojerdi M, Montazeri L, et al. Applicability of Hyaluronic Acid-Alginate Hydrogel and Ovarian Cells for In Vitro Development of Mouse Preantral Follicles[J]. Cell J, 2020, 22(Suppl 1):49-60. doi: 10.22074/cellj.2020.6925.
doi: 10.22074/cellj.2020.6925 pmid: 32779433 |
[10] |
Converse A, Zaniker EJ, Amargant F, et al. Recapitulating folliculogenesis and oogenesis outside the body: encapsulated in vitro follicle growth?[J]. Biol Reprod, 2023, 108(1):5-22. doi: 10.1093/biolre/ioac176.
doi: 10.1093/biolre/ioac176 URL |
[11] |
Brunette MA, Kinnear HM, Hashim PH, et al. Human Ovarian Follicles Xenografted in Immunoisolating Capsules Survive Long Term Implantation in Mice[J]. Front Endocrinol (Lausanne), 2022, 13:886678. doi: 10.3389/fendo.2022.886678.
doi: 10.3389/fendo.2022.886678 |
[12] |
Peng X, Cheng C, Zhang X, et al. Design and Application Strategies of Natural Polymer Biomaterials in Artificial Ovaries[J]. Ann Biomed Eng, 2023, 51(3):461-478. doi: 10.1007/s10439-022-03125-6.
doi: 10.1007/s10439-022-03125-6 |
[13] |
Jalili C, Khani Hemmatabadi F, Mansouri K, et al. Effects of sodium alginate capsules as 3D scaffolds on hormones and genes expression in preantral follicles of mice compared to 2D medium: An experimental study[J]. Int J Reprod Biomed, 2020, 18(7):517-530. doi: 10.18502/ijrm.v13i7.7369.
doi: 10.18502/ijrm.v13i7.7369 pmid: 32803116 |
[14] |
Ouni E, Peaucelle A, Haas KT, et al. A blueprint of the topology and mechanics of the human ovary for next-generation bioengineering and diagnosis[J]. Nat Commun, 2021, 12(1):5603. doi: 10.1038/s41467-021-25934-4.
doi: 10.1038/s41467-021-25934-4 pmid: 34556652 |
[15] |
Choi JK, Agarwal P, Huang H, et al. The crucial role of mechanical heterogeneity in regulating follicle development and ovulation with engineered ovarian microtissue[J]. Biomaterials, 2014, 35(19):5122-5128. doi: 10.1016/j.biomaterials.2014.03.028.
doi: 10.1016/j.biomaterials.2014.03.028 pmid: 24702961 |
[16] |
Xiang D, Liu Y, Zhou E, et al. Advances in the applications of polymer biomaterials for in vitro follicle culture[J]. Biomed Pharmacother, 2021, 140:111422. doi: 10.1016/j.biopha.2021.111422.
doi: 10.1016/j.biopha.2021.111422 |
[17] |
Chiti MC, Dolmans MM, Mortiaux L, et al. A novel fibrin-based artificial ovary prototype resembling human ovarian tissue in terms of architecture and rigidity[J]. J Assist Reprod Genet, 2018, 35(1):41-48. doi: 10.1007/s10815-017-1091-3.
doi: 10.1007/s10815-017-1091-3 URL |
[18] |
Wu M, Guo Y, Wei S, et al. Biomaterials and advanced technologies for the evaluation and treatment of ovarian aging[J]. J Nanobiotechnology, 2022, 20(1):374. doi: 10.1186/s12951-022-01566-8.
doi: 10.1186/s12951-022-01566-8 |
[19] |
Joo S, Oh SH, Sittadjody S, et al. The effect of collagen hydrogel on 3D culture of ovarian follicles[J]. Biomed Mater, 2016, 11(6):065009. doi: 10.1088/1748-6041/11/6/065009.
doi: 10.1088/1748-6041/11/6/065009 |
[20] |
Alaee S, Asadollahpour R, Hosseinzadeh Colagar A, et al. The decellularized ovary as a potential scaffold for maturation of preantral ovarian follicles of prepubertal mice[J]. Syst Biol Reprod Med, 2021, 67(6):413-427. doi: 10.1080/19396368.2021.1968542.
doi: 10.1080/19396368.2021.1968542 URL |
[21] |
Nikniaz H, Zandieh Z, Nouri M, et al. Comparing various protocols of human and bovine ovarian tissue decellularization to prepare extracellular matrix-alginate scaffold for better follicle development in vitro[J]. BMC Biotechnol, 2021, 21(1):8. doi: 10.1186/s12896-020-00658-3.
doi: 10.1186/s12896-020-00658-3 pmid: 33472624 |
[22] |
Liu MN, Zhang K, Xu TM. The role of BMP15 and GDF9 in the pathogenesis of primary ovarian insufficiency[J]. Hum Fertil (Camb), 2021, 24(5):325-332. doi: 10.1080/14647273.2019.1672107.
doi: 10.1080/14647273.2019.1672107 URL |
[23] |
Gargus ES, Rogers HB, McKinnon KE, et al. Engineered reproductive tissues[J]. Nat Biomed Eng, 2020, 4(4):381-393. doi: 10.1038/s41551-020-0525-x.
doi: 10.1038/s41551-020-0525-x pmid: 32251392 |
[24] |
Paltanea G, Manescu Paltanea V, Antoniac I, et al. A Review of Biomimetic and Biodegradable Magnetic Scaffolds for Bone Tissue Engineering and Oncology[J]. Int J Mol Sci, 2023, 24(5):4312. doi: 10.3390/ijms24054312.
doi: 10.3390/ijms24054312 URL |
[25] |
Matsushige C, Xu X, Miyagi M, et al. RGD-modified dextran hydrogel promotes follicle growth in three-dimensional ovarian tissue culture in mice[J]. Theriogenology, 2022, 183:120-131. doi: 10.1016/j.theriogenology.2022.02.009.
doi: 10.1016/j.theriogenology.2022.02.009 pmid: 35247849 |
[26] |
Higuchi CM, Maeda Y, Horiuchi T, et al. A Simplified Method for Three-Dimensional (3-D) Ovarian Tissue Culture Yielding Oocytes Competent to Produce Full-Term Offspring in Mice[J]. PLoS One, 2015, 10(11):e0143114. doi: 10.1371/journal.pone.0143114.
doi: 10.1371/journal.pone.0143114 |
[27] |
Zhu L, Yuhan J, Yu H, et al. Decellularized Extracellular Matrix for Remodeling Bioengineering Organoid′s Microenvironment[J]. Small, 2023:e2207752. doi: 10.1002/smll.202207752.
doi: 10.1002/smll.202207752 |
[28] |
Hassani F, Ebrahimi B, Moini A, et al. Chitosan Hydrogel Supports Integrity of Ovarian Follicles during In Vitro Culture: A Preliminary of A Novel Biomaterial for Three Dimensional Culture of Ovarian Follicles[J]. Cell J, 2020, 21(4):479-493. doi: 10.22074/cellj.2020.6393.
doi: 10.22074/cellj.2020.6393 pmid: 31376330 |
[29] |
Liu X, Wu K, Gao L, et al. Biomaterial strategies for the application of reproductive tissue engineering[J]. Bioact Mater, 2022, 14:86-96. doi: 10.1016/j.bioactmat.2021.11.023.
doi: 10.1016/j.bioactmat.2021.11.023 pmid: 35310354 |
[30] |
Kim J, Perez AS, Claflin J, et al. Synthetic hydrogel supports the function and regeneration of artificial ovarian tissue in mice[J]. NPJ Regen Med, 2016, 1:16010. doi: 10.1038/npjregenmed.2016.10.
doi: 10.1038/npjregenmed.2016.10 |
[31] |
Ren H, Zhang Y, Zhang Y, et al. Optimized study of an in vitro 3D culture of preantral follicles in mice[J]. J Vet Sci, 2023, 24(1):e4. doi: 10.4142/jvs.22223.
doi: 10.4142/jvs.22223 URL |
[32] |
Reed CR, Han L, Andrady A, et al. Composite tissue engineering on polycaprolactone nanofiber scaffolds[J]. Ann Plast Surg, 2009, 62(5):505-512. doi: 10.1097/SAP.0b013e31818e48bf.
doi: 10.1097/SAP.0b013e31818e48bf URL |
[33] |
Liverani L, Raffel N, Fattahi A, et al. Electrospun patterned porous scaffolds for the support of ovarian follicles growth: a feasibility study[J]. Sci Rep, 2019, 9(1):1150. doi: 10.1038/s41598-018-37640-1.
doi: 10.1038/s41598-018-37640-1 pmid: 30718584 |
[34] |
Nation A, Selwood L. The production of mature oocytes from adult ovaries following primary follicle culture in a marsupial[J]. Reproduction, 2009, 138(2):247-255. doi: 10.1530/REP-09-0028.
doi: 10.1530/REP-09-0028 pmid: 19494049 |
[35] |
Xu J, Lawson MS, Mitalipov SM, et al. Stage-specific modulation of antimüllerian hormone promotes primate follicular development and oocyte maturation in the matrix-free three-dimensional culture[J]. Fertil Steril, 2018, 110(6):1162-1172. doi: 10.1016/j.fertnstert.2018.07.006.
doi: S0015-0282(18)30571-5 pmid: 30396561 |
[36] |
Xu F, Lawson MS, Bean Y, et al. Matrix-free 3D culture supports human follicular development from the unilaminar to the antral stage in vitro yielding morphologically normal metaphase II oocytes[J]. Hum Reprod, 2021, 36(5):1326-1338. doi: 10.1093/humrep/deab003.
doi: 10.1093/humrep/deab003 URL |
[37] |
Xiao S, Zhang J, Romero MM, et al. In vitro follicle growth supports human oocyte meiotic maturation[J]. Sci Rep, 2015, 5:17323. doi: 10.1038/srep17323.
doi: 10.1038/srep17323 pmid: 26612176 |
[38] |
McLaughlin M, Albertini DF, Wallace W, et al. Metaphase II oocytes from human unilaminar follicles grown in a multi-step culture system[J]. Mol Hum Reprod, 2018, 24(3):135-142. doi: 10.1093/molehr/gay002.
doi: 10.1093/molehr/gay002 pmid: 29390119 |
[1] | YANG Qin, WANG Han-ting, CAO Yuan-yuan, ZHOU Jun, WANG Gui-ling. Effect of Resveratrol on the Function of Ovarian Granulose Cells [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 524-528. |
[2] | JIANG Nan, ZHAO Xiao-li, LUAN Zu-qian, HUANG Zhi-yun, XIA Tian. Research Progress on the Correlation between Oxidative Stress and Aneuploidy in Oocytes of Aging Women [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 415-419. |
[3] | LI Xuan-ang, WANG Ting-ting, XIANG Shan, ZHAO Shuai, LIAN Fang. Research Progress of Ferroptosis in Pathogenesis of Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 425-429. |
[4] | ZHANG Ai-yu, LUAN Cui-yu, WANG Dong-mei, JIANG Shuai. Analysis on the Status Quo and Influencing Factors of Medical Treatment Delay in Infertility Patients Undergoing IVF-ET [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 190-194. |
[5] | LIU Shu-jie, LI Ming-ze, ZHANG Hai-yan. Modium-Low Differentiation Sertoli-Leydig Cell Tumor of the Ovary: A Case Report and Literature Review [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 207-211. |
[6] | HE Qing-wen, LI Xi-hong. Research Progress on Sleep Disorders in Patients Receiving Assisted Reproductive Technology and Non-Pharmacological Intervention [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 234-237. |
[7] | GAO Zhao-yang, ZHANG Ning-qing, CHEN Qiong-hua, WU Rong-feng. The Role of CircRNAs in Follicular Granulosa Cells of Patients with Endometriosis Infertility [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 243-248. |
[8] | CAO Yuan-yuan, JIA Zan-hui, ZHANG Chun-miao. Research Progress of ZP1 Gene Mutation in Empty Follicle Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 127-131. |
[9] | YE Lin, HOU Zhi-jin, MENG Yu-shi. Research Progress of Sirolimus in the Field of Reproduction [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 132-137. |
[10] | ZHEN Jia, ZHAO Zi-yuan, WANG Zi-lu, SHI Wei, XU Li. Granulosa Cell Autophagy in Pathophysiological Mechanism of Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 150-154. |
[11] | WU Jing, LIU Cong, XIE Qing-zhen. The Effect of Microplastics Exposure on Female and Their Offspring Health [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 155-158. |
[12] | HAO Jia-li, HE Yu-jie. Evaluation of Fertility Quality of Life in Infertile Population and Analysis of Influencing Factors [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 159-165. |
[13] | WEN Xing-xing, CHAI Meng-han, YANG Ni, ZOU Hui-juan, ZHANG Zhi-guo, LI Lin, CHEN Bei-li. A Case of Oocyte Maturation Arrest Caused by Heterozygous Variation of TUBB8 Gene c.154-156del [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 17-19. |
[14] | LUO Li-yan, JIN Ye, SHI Li, HAN Mei, YU Ran, SONG Dong-hong. Stigma and Influencing Factors in Infertile Patients with Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 6-10. |
[15] | WANG Jie, MA Xiang. Relationship between Uric Acid and Female Reproductive Disorders and Pregnancy Outcomes [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 63-67. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||