Journal of International Reproductive Health/Family Planning ›› 2022, Vol. 41 ›› Issue (2): 166-171.doi: 10.12280/gjszjk.20210603
• Review • Previous Articles Next Articles
Received:
2021-12-17
Published:
2022-03-15
Online:
2022-03-29
Contact:
XUE Feng-xia
E-mail:fengxiaxue1962@163.com
TENG Fei, XUE Feng-xia. Research Progress of Cancer-Associated Fibroblasts in Cervical Cancer[J]. Journal of International Reproductive Health/Family Planning, 2022, 41(2): 166-171.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. doi: 10.3322/caac.21660.
doi: 10.3322/caac.21660 URL |
[2] |
Zeltz C, Primac I, Erusappan P, et al. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins[J]. Semin Cancer Biol, 2020, 62:166-181. doi: 10.1016/j.semcancer.2019.08.004.
doi: 10.1016/j.semcancer.2019.08.004 URL |
[3] |
Ganguly D, Chandra R, Karalis J, et al. Cancer-Associated Fibroblasts: Versatile Players in the Tumor Microenvironment[J]. Cancers(Basel), 2020, 12(9):2652. doi: 10.3390/cancers12092652.
doi: 10.3390/cancers12092652 |
[4] |
Sahai E, Astsaturov I, Cukierman E, et al. A framework for advancing our understanding of cancer-associated fibroblasts[J]. Nat Rev Cancer, 2020, 20(3):174-186. doi: 10.1038/s41568-019-0238-1.
doi: 10.1038/s41568-019-0238-1 pmid: 31980749 |
[5] |
Nurmik M, Ullmann P, Rodriguez F, et al. In search of definitions: Cancer-associated fibroblasts and their markers[J]. Int J Cancer, 2020, 146(4):895-905. doi: 10.1002/ijc.32193.
doi: 10.1002/ijc.32193 URL |
[6] |
Wang Z, Yang Q, Tan Y, et al. Cancer-Associated Fibroblasts Suppress Cancer Development: The Other Side of the Coin[J]. Front Cell Dev Biol, 2021, 9:613534. doi: 10.3389/fcell.2021.613534. eCollection 2021.
doi: 10.3389/fcell.2021.613534 URL |
[7] |
Liang LJ, Yang Y, Wei WF, et al. Tumor-secreted exosomal Wnt2B activates fibroblasts to promote cervical cancer progression[J]. Oncogenesis, 2021, 10(3):30. doi: 10.1038/s41389-021-00319-w.
doi: 10.1038/s41389-021-00319-w URL |
[8] |
Sobierajska K, Ciszewski WM, Sacewicz-Hofman I, et al. Endothelial Cells in the Tumor Microenvironment[J]. Adv Exp Med Biol, 2020, 1234:71-86. doi: 10.1007/978-3-030-37184-5_6.
doi: 10.1007/978-3-030-37184-5_6 pmid: 32040856 |
[9] |
Ping Q, Yan R, Cheng X, et al. Cancer-associated fibroblasts: overview, progress, challenges, and directions[J]. Cancer Gene Ther, 2021, 28(9):984-999. doi: 10.1038/s41417-021-00318-4.
doi: 10.1038/s41417-021-00318-4 URL |
[10] |
den Boon JA, Pyeon D, Wang SS, et al. Molecular transitions from papillomavirus infection to cervical precancer and cancer: Role of stromal estrogen receptor signaling[J]. Proc Natl Acad Sci U S A, 2015, 112(25):E3255-E3264. doi: 10.1073/pnas.1509322112.
doi: 10.1073/pnas.1509322112 |
[11] |
Xiao L, Zhu H, Shu J, et al. Overexpression of TGF-beta1 and SDF-1 in cervical cancer-associated fibroblasts promotes cell growth, invasion and migration[J]. Arch Gynecol Obstet, 2022, 305(1):179-192. doi: 10.1007/s00404-021-06137-0.
doi: 10.1007/s00404-021-06137-0 URL |
[12] |
Fullar A, Dudas J, Olah L, et al. Remodeling of extracellular matrix by normal and tumor-associated fibroblasts promotes cervical cancer progression[J]. BMC Cancer, 2015, 15:256. doi: 10.1186/s12885-015-1272-3.
doi: 10.1186/s12885-015-1272-3 URL |
[13] |
Fullar A, Karaszi K, Hollosi P, et al. Two ways of epigenetic silencing of TFPI2 in cervical cancer[J]. PLoS One, 2020, 15(6):e234873. doi: 10.1371/journal.pone.0234873. eCollection 2020.
doi: 10.1371/journal.pone.0234873 |
[14] |
Zhang J, Wang Q, Quan Z. Long non-coding RNA CASC9 enhances breast cancer progression by promoting metastasis through the meditation of miR-215/TWIST2 signaling associated with TGF-beta expression[J]. Biochem Biophys Res Commun, 2019, 515(4):644-650. doi: 10.1016/j.bbrc.2019.05.080.
doi: 10.1016/j.bbrc.2019.05.080 URL |
[15] |
Wang Z, Liu J, Huang H, et al. Metastasis-associated fibroblasts: an emerging target for metastatic cancer[J]. Biomark Res, 2021, 9(1):47. doi: 10.1186/s40364-021-00305-9.
doi: 10.1186/s40364-021-00305-9 URL |
[16] |
Huang TH, Chu TY. Repression of miR-126 and upregulation of adrenomedullin in the stromal endothelium by cancer-stromal cross talks confers angiogenesis of cervical cancer[J]. Oncogene, 2014, 33(28):3636-3647. doi: 10.1038/onc.2013.335.
doi: 10.1038/onc.2013.335 pmid: 24037526 |
[17] |
Zhang X, Wang Y, Wang X, et al. Extracellular vesicles-encapsulated microRNA-10a-5p shed from cancer-associated fibroblast facilitates cervical squamous cell carcinoma cell angiogenesis and tumorigenicity via Hedgehog signaling pathway[J]. Cancer Gene Ther, 2021, 28(5):529-542. doi: 10.1038/s41417-020-00238-9.
doi: 10.1038/s41417-020-00238-9 pmid: 33235271 |
[18] |
Wu MP, Young MJ, Tzeng CC, et al. A novel role of thrombospondin-1 in cervical carcinogenesis: inhibit stroma reaction by inhibiting activated fibroblasts from invading cancer[J]. Carcinogenesis, 2008, 29(6):1115-1123. doi: 10.1093/carcin/bgn077.
doi: 10.1093/carcin/bgn077 URL |
[19] |
Walch-Ruckheim B, Stroder R, Theobald L, et al. Cervical Cancer-Instructed Stromal Fibroblasts Enhance IL23 Expression in Dendritic Cells to Support Expansion of Th17 Cells[J]. Cancer Res, 2019, 79(7):1573-1586. doi: 10.1158/0008-5472.CAN-18-1913.
doi: 10.1158/0008-5472.CAN-18-1913 pmid: 30696656 |
[20] |
Galazka K, Oplawski M, Windorbska W, et al. The immunohistochemical analysis of antigens such as RCAS1 and B7H4 in the cervical cancer nest and within the fibroblasts and macrophages infiltrating the cancer microenvironment[J]. Am J Reprod Immunol, 2012, 68(1):85-93. doi: 10.1111/j.1600-0897. 2012.01134.x.
doi: 10.1111/j.1600-0897. 2012.01134.x URL |
[21] |
Li B, Sui L. Metabolic reprogramming in cervical cancer and metabolomics perspectives[J]. Nutr Metab(Lond), 2021, 18(1):93. doi: 10.1186/s12986-021-00615-7.
doi: 10.1186/s12986-021-00615-7 |
[22] |
Druzhkova IN, Shirmanova MV, Lukina MM, et al. The metabolic interaction of cancer cells and fibroblasts-coupling between NAD(P)H and FAD, intracellular pH and hydrogen peroxide[J]. Cell Cycle, 2016, 15(9):1257-1266. doi: 10.1080/15384101. 2016.1160974.
doi: 10.1080/15384101.2016.1160974 pmid: 26986068 |
[23] |
Martinez-Outschoorn UE, Lisanti MP, Sotgia F. Catabolic cancer-associated fibroblasts transfer energy and biomass to anabolic cancer cells, fueling tumor growth[J]. Semin Cancer Biol, 2014, 25:47-60. doi: 10.1016/j.semcancer.2014.01.005.
doi: 10.1016/j.semcancer.2014.01.005 pmid: 24486645 |
[24] |
Li Z, Sun C, Qin Z. Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming[J]. Theranostics, 2021, 11(17):8322-8336. doi: 10.7150/thno.62378.
doi: 10.7150/thno.62378 URL |
[25] |
郭楚鸿, 陈晓静, 王梓慈, 等. TAMs与CAFs联合预测子宫颈癌淋巴结转移研究[J]. 中国实用妇科与产科杂志, 2021, 37(4):478-481. doi: 10.19538/j.fk2021040117.
doi: 10.19538/j.fk2021040117 |
[26] |
Carvalho FM, Zaganelli FL, Almeida BG, et al. Prognostic value of podoplanin expression in intratumoral stroma and neoplastic cells of uterine cervical carcinomas[J]. Clinics (Sao Paulo), 2010, 65(12):1279-1283. doi: 10.1590/s1807-59322010001200009.
doi: 10.1590/s1807-59322010001200009 URL |
[27] |
Wei WF, Chen XJ, Liang LJ, et al. Periostin(+) cancer-associated fibroblasts promote lymph node metastasis by impairing the lymphatic endothelial barriers in cervical squamous cell carcinoma[J]. Mol Oncol, 2021, 15(1):210-227. doi: 10.1002/1878-0261. 12837.
doi: 10.1002/1878-0261. 12837 URL |
[28] |
Chu TY, Yang JT, Huang TH, et al. Crosstalk with cancer-associated fibroblasts increases the growth and radiation survival of cervical cancer cells[J]. Radiat Res, 2014, 181(5):540-547. doi: 10.1667/RR13583.1.
doi: 10.1667/RR13583.1 URL |
[29] |
Kim KH, Chang JS, Byun HK, et al. A novel gene signature associated with poor response to chemoradiotherapy in patients with locally advanced cervical cancer[J]. J Gynecol Oncol, 2022, 33(1):e7. doi: 10.3802/jgo.2022.33.e7.
doi: 10.3802/jgo.2022.33.e7 URL |
[30] |
Walter SG, Scheidt S, Nissler R, et al. In-Depth Characterization of Stromal Cells within the Tumor Microenvironment Yields Novel Therapeutic Targets[J]. Cancers (Basel), 2021, 13(6):1466. doi: 10.3390/cancers13061466.
doi: 10.3390/cancers13061466 URL |
[31] |
Pietras K, Pahler J, Bergers G, et al. Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting[J]. PLoS Med, 2008, 5(1):e19. doi: 10.1371/journal.pmed.0050019.
doi: 10.1371/journal.pmed.0050019 URL |
[32] |
Hassan RN, Luo H, Jiang W. Effects of Nicotinamide on Cervical Cancer-Derived Fibroblasts: Evidence for Therapeutic Potential[J]. Cancer Manag Res, 2020, 12:1089-1100. doi: 10.2147/CMAR.S229395.
doi: 10.2147/CMAR.S229395 pmid: 32104089 |
[33] |
Bromma K, Bannister A, Kowalewski A, et al. Elucidating the fate of nanoparticles among key cell components of the tumor microenvironment for promoting cancer nanotechnology[J]. Cancer Nanotechnol, 2020, 11(1):8. doi: 10.1186/s12645-020-00064-6.
doi: 10.1186/s12645-020-00064-6 pmid: 32849921 |
[34] |
De Gregorio V, La Rocca A, Urciuolo F, et al. Modeling the epithelial-mesenchymal transition process in a 3D organotypic doi: 10.1016/j.actbio.2020.09.006 URL |
[35] |
Zhou B, Yu Y, Yu L, et al. Sipi soup inhibits cancer-associated fibroblast activation and the inflammatory process by downregulating long noncoding RNA HIPK1AS[J]. Mol Med Rep, 2018, 18(2):1361-1368. doi: 10.3892/mmr.2018.9144.
doi: 10.3892/mmr.2018.9144 |
[1] | GAO Xiao-li, SU Jing, LI Zeng-yan, LI Jie. Clinical Analysis of 14 Cases of Pregnancy-Associated Hemolytic Uremic Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 458-461. |
[2] | XU Qian, CHENG Jiu-mei, AN Yuan-yuan. Clinical Analysis of 8 Cases of Vulvar Leiomyoma [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 467-470. |
[3] | ZHANG Dan-li, SHI Xue-dong, LI Jian-lei, ZHOU Li-fei, WANG Wen-yi, ZHANG Ping-ping, LI Ya-li. A Novel KMT2D Variant Causing Kabuki Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 471-474. |
[4] | SHI Hong-li, XU Li-xin, LIAN Hong-mei. A Case of Primary Endometrial Yolk Sac Tumor in A Postmenopausal Woman [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 479-484. |
[5] | LIU Si-min, WANG Jia-li, ZHANG Shi-xia, WEI Jia, YANG Yong-xiu. Dermatofibrosarcoma Protuberans of Vulva: A Case Report [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 490-493. |
[6] | TIAN Dejier, FENG Xiao-ling. Possible Application of Myo-Inositol and D-Chiro-Inositol in Treatment of Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 512-517. |
[7] | XU Qian, CHENG Jiu-mei. Clinical Analysis of 17 Cases of Cervical Lipoleiomyoma [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 390-394. |
[8] | RAO Hui, LU Jiao-lan, ZHOU Huan, LI Xiong. Mesonephric-Like Adenocarcinoma of the Endometrium Involving Cervical Interstitium: A Case Report [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 410-414. |
[9] | XU Xiao-yan, WANG Xiao-xuan. Diagnosis and Treatment of Three Cases of Ovarian Pregnancy Rupture [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 309-312. |
[10] | LI Dan-ping, LIAN Fang, XIANG Shan. New Progress in the Mechanism of Metformin Therapy for Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 343-347. |
[11] | LIU Shu-jie, LI Ming-ze, ZHANG Hai-yan. Modium-Low Differentiation Sertoli-Leydig Cell Tumor of the Ovary: A Case Report and Literature Review [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 207-211. |
[12] | WANG Jing, WANG Xiao-hui. Small Cell Neuroendocrine Carcinoma of the Endometrium: A Case Report and Literature Review [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 212-215. |
[13] | HE Qing-wen, LI Xi-hong. Research Progress on Sleep Disorders in Patients Receiving Assisted Reproductive Technology and Non-Pharmacological Intervention [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 234-237. |
[14] | SHI Bai-chao, CHANG Hui, WANG Yu, LU Feng-juan, WANG Kai-yue, GUAN Mu-xin, MA Liang, WU Xiao-ke. The Role of Gut Microbiota in Patients with Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 238-242. |
[15] | WANG Fang, WAN Tao, YANG Yong-xiu. Research Progress on the Correlation between the Endometrial Cancer Associated with Type 2 Diabetes Mellitus and the Intestinal Flora [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(3): 249-253. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||