Journal of International Reproductive Health/Family Planning ›› 2025, Vol. 44 ›› Issue (2): 144-149.doi: 10.12280/gjszjk.20240519
• Review • Previous Articles Next Articles
ZHANG Jiang-lin, YUAN Hai-ning, ZHANG Yun-jie, LI Heng-bing, YUAN Li-hua, SUN Zhen-gao()
Received:
2024-10-28
Published:
2025-03-15
Online:
2025-03-10
Contact:
SUN Zhen-gao, E-mail: ZHANG Jiang-lin, YUAN Hai-ning, ZHANG Yun-jie, LI Heng-bing, YUAN Li-hua, SUN Zhen-gao. Research Progress on the Mechanisms of Oocyte Aging[J]. Journal of International Reproductive Health/Family Planning, 2025, 44(2): 144-149.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Adhikari D, Lee IW, Yuen WS, et al. Oocyte mitochondria-key regulators of oocyte function and potential therapeutic targets for improving fertility[J]. Biol Reprod, 2022, 106(2):366-377. doi: 10.1093/biolre/ioac024.
pmid: 35094043 |
[2] | Joubert F, Puff N. Mitochondrial Cristae Architecture and Functions: Lessons from Minimal Model Systems[J]. Membranes(Basel), 2021, 11(7):465. doi: 10.3390/membranes11070465. |
[3] | Berry BJ, Vodicková A, Müller-Eigner A, et al. Optogenetic rejuvenation of mitochondrial membrane potential extends C. elegans lifespan[J]. Nat Aging, 2023, 3(2):157-161. doi: 10.1038/s43587-022-00340-7. |
[4] | Zaib S, Hayyat A, Ali N, et al. Role of Mitochondrial Membrane Potential and Lactate Dehydrogenase A in Apoptosis[J]. Anticancer Agents Med Chem, 2022, 22(11):2048-2062. doi: 10.2174/1871520621666211126090906. |
[5] | Güçlü E, Çınar A, Dursun HG, et al. Tomentosin induces apoptosis in pancreatic cancer cells through increasing reactive oxygen species and decreasing mitochondrial membrane potential[J]. Toxicol In Vitro, 2022,84:105458. doi: 10.1016/j.tiv.2022.105458. |
[6] | Han X, Xing L, Hong Y, et al. Nuclear RNA homeostasis promotes systems-level coordination of cell fate and senescence[J]. Cell Stem Cell, 2024, 31(5):694-716.e11. doi: 10.1016/j.stem.2024.03.015. |
[7] |
Zhang Y, Bai J, Cui Z, et al. Polyamine metabolite spermidine rejuvenates oocyte quality by enhancing mitophagy during female reproductive aging[J]. Nat Aging, 2023, 3(11):1372-1386. doi: 10.1038/s43587-023-00498-8.
pmid: 37845508 |
[8] |
May-Panloup P, Desquiret V, Morinière C, et al. Mitochondrial macro-haplogroup JT may play a protective role in ovarian ageing[J]. Mitochondrion, 2014, 18:1-6. doi: 10.1016/j.mito.2014.08.002.
pmid: 25132080 |
[9] | Liu BH, Xu CZ, Liu Y, et al. Mitochondrial quality control in human health and disease[J]. Mil Med Res, 2024, 11(1):32. doi: 10.1186/s40779-024-00536-5. |
[10] | Jin X, Wang K, Wang L, et al. RAB7 activity is required for the regulation of mitophagy in oocyte meiosis and oocyte quality control during ovarian aging[J]. Autophagy, 2022, 18(3):643-660. doi: 10.1080/15548627.2021.1946739. |
[11] | Nolfi-Donegan D, Braganza A, Shiva S. Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement[J]. Redox Biol, 2020,37:101674. doi: 10.1016/j.redox.2020.101674. |
[12] | Kobayashi H, Yoshimoto C, Matsubara S, et al. Altered Energy Metabolism, Mitochondrial Dysfunction, and Redox Imbalance Influencing Reproductive Performance in Granulosa Cells and Oocyte During Aging[J]. Reprod Sci, 2024, 31(4):906-916. doi: 10.1007/s43032-023-01394-7. |
[13] | Kirillova A, Smitz J, Sukhikh GT, et al. The Role of Mitochondria in Oocyte Maturation[J]. Cells, 2021, 10(9):2484. doi: 10.3390/cells10092484. |
[14] | 张楠, 张珏, 林戈. 哺乳动物卵母细胞的DNA损伤与修复研究进展[J]. 遗传, 2023, 45(5):379-394. doi: 10.16288/j.yczz.23-018. |
[15] | Zhao RZ, Jiang S, Zhang L, et al. Mitochondrial electron transport chain, ROS generation and uncoupling (Review)[J]. Int J Mol Med, 2019, 44(1):3-15. doi: 10.3892/ijmm.2019.4188. |
[16] | Hori YS, Kuno A, Hosoda R, et al. Regulation of FOXOs and p53 by SIRT1 modulators under oxidative stress[J]. PLoS One, 2013, 8(9):e73875. doi: 10.1371/journal.pone.0073875. |
[17] | Vo KCT, Sato Y, Kawamura K. Improvement of oocyte quality through the SIRT signaling pathway[J]. Reprod Med Biol, 2023, 22(1):e12510. doi: 10.1002/rmb2.12510. |
[18] | Ming PF, Huang YY, Dong YL, et al. Regulation of LKB1-AMPKα-SIRT1 Signal Pathway in Lipid Metabolism in the Adipose Tissue of Dairy Cows[J]. Biotechnol Bull, 2019, 35(2):176-181. |
[19] | You Y, Liang W. SIRT1 and SIRT6: The role in aging-related diseases[J]. Biochim Biophys Acta Mol Basis Dis, 2023, 1869(7): 166815. doi: 10.1016/j.bbadis.2023.166815. |
[20] | Liu Y, Wei H, Li J. A review on SIRT3 and its natural small molecule activators as a potential Preventive and therapeutic target[J]. Eur J Pharmacol, 2024,963:176155. doi: 10.1016/j.ejphar.2023.176155. |
[21] |
Wang B, Wang Y, Zhang J, et al. ROS-induced lipid peroxidation modulates cell death outcome: mechanisms behind apoptosis, autophagy, and ferroptosis[J]. Arch Toxicol, 2023, 97 (6):1439-1451.doi: 10.1007/s00204-023-03476-6.
pmid: 37127681 |
[22] | Kobayashi H, Imanaka S. Recent progress in metabolomics for analyzing common infertility conditions that affect ovarian function[J]. Reprod Med Biol, 2024, 23(1):e12609. doi: 10.1002/rmb2.12609. |
[23] |
Ademowo OS, Dias H, Burton D, et al. Lipid (per) oxidation in mitochondria: an emerging target in the ageing process?[J]. Biogerontology, 2017, 18(6):859-879. doi: 10.1007/s10522-017-9710-z.
pmid: 28540446 |
[24] | Li Y, Zhao T, Li J, et al. Oxidative Stress and 4-hydroxy-2-nonenal (4-HNE): Implications in the Pathogenesis and Treatment of Aging-related Diseases[J]. J Immunol Res, 2022,2022:2233906. doi: 10.1155/2022/2233906. |
[25] | Park SU, Walsh L, Berkowitz KM. Mechanisms of ovarian aging[J]. Reproduction, 2021, 162(2):R19-R33. doi: 10.1530/REP-21-0022. |
[26] |
Lamb NE, Yu K, Shaffer J, et al. Association between maternal age and meiotic recombination for trisomy 21[J]. Am J Hum Genet, 2005, 76(1):91-99. doi: 10.1086/427266.
pmid: 15551222 |
[27] | Bai L, Li P, Xiang Y, et al. BRCA1 safeguards genome integrity by activating chromosome asynapsis checkpoint to eliminate recombination-defective oocytes[J]. Proc Natl Acad Sci U S A, 2024, 121(19):e2401386121. doi: 10.1073/pnas.2401386121. |
[28] | Liu C, Zuo W, Yan G, et al. Granulosa cell mevalonate pathway abnormalities contribute to oocyte meiotic defects and aneuploidy[J]. Nat Aging, 2023, 3(6):670-687. doi: 10.1038/s43587-023-00419-9. |
[29] | Takenouchi O, Sakakibara Y, Kitajima TS. Live chromosome identifying and tracking reveals size-based spatial pathway of meiotic errors in oocytes[J]. Science, 2024, 385(6706):eadn5529. doi: 10.1126/science.adn5529. |
[30] | Zhu Z, Xu W, Liu L. Ovarian aging: mechanisms and intervention strategies[J]. Med Rev(2021), 2022, 2(6):590-610. doi: 10.1515/mr-2022-0031. |
[31] | Haseeb MA, Bernys AC, Dickert EE, et al. An RNAi screen to identify proteins required for cohesion rejuvenation during meiotic prophase in Drosophila oocytes[J]. G3(Bethesda), 2024, 14(8):jkae123. doi: 10.1093/g3journal/jkae123. |
[32] | Wassmann K. Separase Control and Cohesin Cleavage in Oocytes: Should I Stay or Should I Go?[J]. Cells, 2022, 11(21):3399. doi: 10.3390/cells11213399. |
[33] | Mihalas BP, Pieper GH, Aboelenain M, et al. Age-dependent loss of cohesion protection in human oocytes[J]. Curr Biol, 2024, 34(1):117-131.e5. doi: 10.1016/j.cub.2023.11.061. |
[34] |
Bao S, Yin T, Liu S. Ovarian aging: energy metabolism of oocytes[J]. J Ovarian Res, 2024, 17(1):118. doi: 10.1186/s13048-024-01427-y.
pmid: 38822408 |
[35] | Smits M, Schomakers BV, van Weeghel M, et al. Human ovarian aging is characterized by oxidative damage and mitochondrial dysfunction[J]. Hum Reprod, 2023, 38(11):2208-2220. doi: 10.1093/humrep/dead177. |
[36] | Covarrubias AJ, Perrone R, Grozio A, et al. NAD+ metabolism and its roles in cellular processes during ageing[J]. Nat Rev Mol Cell Biol, 2021, 22(2):119-141. doi: 10.1038/s41580-020-00313-x. |
[37] |
Fukamizu Y, Uchida Y, Shigekawa A, et al. Safety evaluation of β-nicotinamide mononucleotide oral administration in healthy adult men and women[J]. Sci Rep, 2022, 12(1):14442. doi: 10.1038/s41598-022-18272-y.
pmid: 36002548 |
[38] |
Johmura Y, Yamanaka T, Omori S, et al. Senolysis by glutaminolysis inhibition ameliorates various age-associated disorders[J]. Science, 2021, 371(6526):265-270. doi: 10.1126/science.abb5916.
pmid: 33446552 |
[39] | Li M, Wang Y, Wei X, et al. AMPK-PDZD8-GLS1 axis mediates calorie restriction-induced lifespan extension[J]. Cell Res, 2024, 34(11):806-809. doi: 10.1038/s41422-024-01021-3. |
[40] |
Silva J, Lima F, Souza A, et al. Interleukin-1β and TNF-α systems in ovarian follicles and their roles during follicular development, oocyte maturation and ovulation[J]. Zygote, 2020, 28(4):270-277. doi: 10.1017/S0967199420000222.
pmid: 32383419 |
[41] | Szeliga A, Calik-Ksepka A, Maciejewska-Jeske M, et al. Autoimmune Diseases in Patients with Premature Ovarian Insufficiency-Our Current State of Knowledge[J]. Int J Mol Sci, 2021, 22(5):2594. doi: 10.3390/ijms22052594. |
[42] |
Lliberos C, Liew SH, Zareie P, et al. Evaluation of inflammation and follicle depletion during ovarian ageing in mice[J]. Sci Rep, 2021, 11(1):278. doi: 10.1038/s41598-020-79488-4.
pmid: 33432051 |
[43] | Zhang L, Pitcher LE, Yousefzadeh MJ, et al. Cellular senescence: a key therapeutic target in aging and diseases[J]. J Clin Invest, 2022, 132(15):e158450. doi: 10.1172/JCI158450. |
[44] | Kang MH, Kim YJ, Cho MJ, et al. Mitigating Age-Related Ovarian Dysfunction with the Anti-Inflammatory Agent MIT-001[J]. Int J Mol Sci, 2023, 24(20):15158. doi: 10.3390/ijms242015158. |
[45] | Ali I, Padhiar AA, Wang T, et al. Stem Cell-Based Therapeutic Strategies for Premature Ovarian Insufficiency and Infertility: A Focus on Aging[J]. Cells, 2022, 11(23):3713. doi: 10.3390/cells11233713. |
[46] | Li Z, Qi H, Li Z, et al. Research progress on the premature ovarian failure caused by cisplatin therapy[J]. Front Oncol, 2023,13:1276310. doi: 10.3389/fonc.2023.1276310. |
[47] | Wang Y, Pope I, Brennan-Craddock H, et al. A primary effect of palmitic acid on mouse oocytes is the disruption of the structure of the endoplasmic reticulum[J]. Reproduction, 2021, 163(1):45-56. doi: 10.1530/REP-21-0332. |
[1] | JIANG Nan, ZHAO Xiao-li, LI Kai-xi, XU Jia-qi, JIA Ying-ying, XIA Tian. The Correlation between Excessive Activation of Primordial Follicles and Diminished Ovarian Reserve [J]. Journal of International Reproductive Health/Family Planning, 2025, 44(2): 132-136. |
[2] | CHEN Xue-hua, ZHOU Hong, WANG Cai-zhu. Research Progress of Noninvasive Embryo Screening in IVF-ET [J]. Journal of International Reproductive Health/Family Planning, 2025, 44(1): 41-46. |
[3] | WANG Lin, XU Jian. Influencing Factors of Ovarian Tissue Vitrification and Transplantation Techniques [J]. Journal of International Reproductive Health/Family Planning, 2025, 44(1): 47-53. |
[4] | XU Qiang, ZHANG Man-li, LA Xiao-lin. Mitochondrial Abnormalities in Diminished Ovarian Reserve [J]. Journal of International Reproductive Health/Family Planning, 2025, 44(1): 54-58. |
[5] | YANG Qin, WANG Han-ting, CAO Yuan-yuan, ZHOU Jun, WANG Gui-ling. Effect of Resveratrol on the Function of Ovarian Granulose Cells [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 524-528. |
[6] | WANG Jun-yu, CHEN Wen-li, WU Rong-quan, JIANG Yu-ying, ZHUANG Jian-long. Application of Chromosome Microarray Technology in Genetic Etiology Diagnosis of Fetuses with Polyhydramnios [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 384-389. |
[7] | CHEN Xin-ying, HUANG Ting-ting, ZENG Shu-hong, JIANG Yu-ying, ZHUANG Jian-long. Genetic Etiology Analysis of A Case of Fetal Lymphedema [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 395-398. |
[8] | JIANG Nan, ZHAO Xiao-li, LUAN Zu-qian, HUANG Zhi-yun, XIA Tian. Research Progress on the Correlation between Oxidative Stress and Aneuploidy in Oocytes of Aging Women [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 415-419. |
[9] | LI Jia-li, TU Xu-xu, WANG Shi-meng, NIU Ding-ren, FENG Xiao-ling. Recurrent Spontaneous Abortion Related to Oxidative Stress at Maternal-Fetal Interface [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(5): 435-440. |
[10] | WEN Xin, ZHAO Xiao-li, LUAN Zu-qian, XIA Tian. Immunometabolic Microenvironment at the Maternal-Fetal Interface Regulating Embryo Implantation [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(2): 138-143. |
[11] | WEN Xing-xing, CHAI Meng-han, YANG Ni, ZOU Hui-juan, ZHANG Zhi-guo, LI Lin, CHEN Bei-li. A Case of Oocyte Maturation Arrest Caused by Heterozygous Variation of TUBB8 Gene c.154-156del [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 17-19. |
[12] | GAO Ya-ting, WANG Fang, MA Jian-hong, MA Yi-tong, LIU Chang. Research Progress of Cuproptosis in Gynecologic Malignant Tumor [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 74-78. |
[13] | SHEN Ling-chao, WANG Xin, JI Dong-mei. Advances and Prevention Strategies for Mitochondrial Genetic Diseases Caused by the Mitochondrial DNA 8344A>G Mutation [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 471-475. |
[14] | ZHANG Yu-jie, WANG Wen-cheng, ZHANG Ning. Research Progress of GDF-9 and BMP-15 on Follicular Development and Insulin Resistance in PCOS [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 487-491. |
[15] | YE Ming-zhu, ZHENG Jie, LI Jie-peng, XU Li-xin. Application of Oocyte Cryopreservation in Patients with Iatrogenic Diminished Ovarian Reserve [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(6): 498-502. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||