Journal of International Reproductive Health/Family Planning ›› 2025, Vol. 44 ›› Issue (1): 41-46.doi: 10.12280/gjszjk.20240364
• Review • Previous Articles Next Articles
CHEN Xue-hua, ZHOU Hong, WANG Cai-zhu()
Received:
2024-07-29
Published:
2025-01-15
Online:
2025-01-22
Contact:
WANG Cai-zhu, E-mail: CHEN Xue-hua, ZHOU Hong, WANG Cai-zhu. Research Progress of Noninvasive Embryo Screening in IVF-ET[J]. Journal of International Reproductive Health/Family Planning, 2025, 44(1): 41-46.
Add to citation manager EndNote|Ris|BibTeX
[1] | Chen P, Hu KL, Jin J, et al. Risk factors for twin pregnancy in women undergoing double cleavage embryo transfer[J]. BMC Pregnancy Childbirth, 2022, 22(1):264. doi: 10.1186/s12884-022-04606-1. |
[2] | Katler QS, Kawwass JF, Hurst BS, et al. Vanquishing multiple pregnancy in in vitro fertilization in the United States-a 25-year endeavor[J]. Am J Obstet Gynecol, 2022, 227(2):129-135. doi: 10.1016/j.ajog.2022.02.005. |
[3] | 季玉娟, 郑爱燕, 丁洁, 等. 优化选择性卵裂期单胚胎移植策略的妊娠结局分析[J]. 生殖医学杂志, 2022, 31(8):1022-1029. doi: 10.3969/j.issn.1004-3845.2022.08.002. |
[4] |
Lou H, Li N, Guan Y, et al. Association between morphologic grading and implantation rate of Euploid blastocyst[J]. J Ovarian Res, 2021, 14(1):18. doi: 10.1186/s13048-021-00770-8.
pmid: 33485390 |
[5] | Ozgur K, Berkkanoglu M, Bulut H, et al. Blastocyst age, expansion, trophectoderm morphology, and number cryopreserved are variables predicting clinical implantation in single blastocyst frozen embryo transfers in freeze-only-IVF[J]. J Assist Reprod Genet, 2021, 38(5):1077-1087. doi: 10.1007/s10815-021-02110-7. |
[6] | Hammond ER, Foong A, Rosli N, et al. Should we freeze it? Agreement on fate of borderline blastocysts is poor and does not improve with a modified blastocyst grading system[J]. Hum Reprod, 2020, 35(5):1045-1053. doi: 10.1093/humrep/deaa060. |
[7] | Fordham DE, Rosentraub D, Polsky AL, et al. Embryologist agreement when assessing blastocyst implantation probability: is data-driven prediction the solution to embryo assessment subjectivity?[J]. Hum Reprod, 2022, 37(10):2275-2290. doi: 10.1093/humrep/deac171. |
[8] | Cimadomo D, Soscia D, Vaiarelli A, et al. Looking past the appearance: a comprehensive description of the clinical contribution of poor-quality blastocysts to increase live birth rates during cycles with aneuploidy testing[J]. Hum Reprod, 2019, 34(7):1206-1214. doi: 10.1093/humrep/dez078. |
[9] | Apter S, Ebner T, Freour T, et al. Good practice recommendations for the use of time-lapse technology[J]. Hum Reprod Open, 2020, 2020(2):hoaa008. doi: 10.1093/hropen/hoaa008. |
[10] | 于婉莹, 苏兴, 崔静, 等. 早期异常卵裂对胚胎发育潜能及妊娠结局的影响[J]. 联勤军事医学, 2023, 37(6):472-476. doi: 10.13730/j.issn.2097-2148.2023.06.004. |
[11] |
Ozbek IY, Mumusoglu S, Polat M, et al. Comparison of single euploid blastocyst transfer cycle outcome derived from embryos with normal or abnormal cleavage patterns[J]. Reprod Biomed Online, 2021, 42(5):892-900. doi: 10.1016/j.rbmo.2021.02.005.
pmid: 33810985 |
[12] |
Bamford T, Barrie A, Montgomery S, et al. Morphological and morphokinetic associations with aneuploidy: a systematic review and meta-analysis[J]. Hum Reprod Update, 2022, 28(5):656-686. doi: 10.1093/humupd/dmac022.
pmid: 35613016 |
[13] | Huang B, Tan W, Li Z, et al. An artificial intelligence model (euploid prediction algorithm) can predict embryo ploidy status based on time-lapse data[J]. Reprod Biol Endocrinol, 2021, 19(1):185. doi: 10.1186/s12958-021-00864-4. |
[14] |
Canosa S, Licheri N, Bergandi L, et al. A novel machine-learning framework based on early embryo morphokinetics identifies a feature signature associated with blastocyst development[J]. J Ovarian Res, 2024, 17(1):63. doi: 10.1186/s13048-024-01376-6.
pmid: 38491534 |
[15] | Diakiw SM, Hall J, VerMilyea MD, et al. Development of an artificial intelligence model for predicting the likelihood of human embryo euploidy based on blastocyst images from multiple imaging systems during IVF[J]. Hum Reprod, 2022, 37(8):1746-1759. doi: 10.1093/humrep/deac131. |
[16] | VerMilyea M, Hall J, Diakiw SM, et al. Development of an artificial intelligence-based assessment model for prediction of embryo viability using static images captured by optical light microscopy during IVF[J]. Hum Reprod, 2020, 35(4):770-784. doi: 10.1093/humrep/deaa013. |
[17] | Benchaib M, Labrune E, Giscard d′Estaing S, et al. Shallow artificial networks with morphokinetic time-lapse parameters coupled to ART data allow to predict live birth[J]. Reprod Med Biol, 2022, 21(1):e12486. doi: 10.1002/rmb2.12486. |
[18] | Minasi MG, Greco P, Varricchio MT, et al. The clinical use of time-lapse in human-assisted reproduction[J]. Ther Adv Reprod Health, 2020,14:2633494120976921. doi: 10.1177/2633494120976921. |
[19] |
Sciorio R, Meseguer M. Focus on time-lapse analysis: blastocyst collapse and morphometric assessment as new features of embryo viability[J]. Reprod Biomed Online, 2021, 43(5):821-832. doi: 10.1016/j.rbmo.2021.08.008.
pmid: 34593324 |
[20] | Zmuidinaite R, Sharara FI, Iles RK. Current Advancements in Noninvasive Profiling of the Embryo Culture Media Secretome[J]. Int J Mol Sci, 2021, 22(5):2513. doi: 10.3390/ijms22052513. |
[21] | Iles RK, Sharara FI, Zmuidinaite R, et al. Secretome profile selection of optimal IVF embryos by matrix-assisted laser desorption ionization time-of-flight mass spectrometry[J]. J Assist Reprod Genet, 2019, 36(6):1153-1160. doi: 10.1007/s10815-019-01444-7. |
[22] | Figoli CB, Garcea M, Bisioli C, et al. A robust metabolomics approach for the evaluation of human embryos from in vitro fertilization[J]. Analyst, 2021, 146(20):6156-6169. doi: 10.1039/d1an01191j. |
[23] | Liang R, Duan SN, Fu M, et al. Prediction model for day 3 embryo implantation potential based on metabolites in spent embryo culture medium[J]. BMC Pregnancy Childbirth, 2023, 23(1):425. doi: 10.1186/s12884-023-05666-7. |
[24] | Pinto S, Guerra-Carvalho B, Crisóstomo L, et al. Metabolomics Integration in Assisted Reproductive Technologies for Enhanced Embryo Selection beyond Morphokinetic Analysis[J]. Int J Mol Sci, 2023, 25(1):491. doi: 10.3390/ijms25010491. |
[25] | Eldarov C, Gamisonia A, Chagovets V, et al. LC-MS Analysis Revealed the Significantly Different Metabolic Profiles in Spent Culture Media of Human Embryos with Distinct Morphology, Karyotype and Implantation Outcomes[J]. Int J Mol Sci, 2022, 23(5):2706. doi: 10.3390/ijms23052706. |
[26] | Brown C, Montina T, Inglis GD. Feather pulp: a novel substrate useful for proton nuclear magnetic resonance spectroscopy metabolomics and biomarker discovery[J]. Poult Sci, 2022, 101(7):101866. doi: 10.1016/j.psj.2022.101866. |
[27] |
Poli M, Ori A, Child T, et al. Characterization and quantification of proteins secreted by single human embryos prior to implantation[J]. EMBO Mol Med, 2015, 7(11):1465-1479. doi: 10.15252/emmm.201505344.
pmid: 26471863 |
[28] |
Katz-Jaffe MG, Gardner DK, Schoolcraft WB. Proteomic analysis of individual human embryos to identify novel biomarkers of development and viability[J]. Fertil Steril, 2006, 85(1):101-107. doi: 10.1016/j.fertnstert.2005.09.011.
pmid: 16412738 |
[29] |
Butler SA, Luttoo J, Freire MO, et al. Human chorionic gonadotropin (hCG) in the secretome of cultured embryos: hyperglycosylated hCG and hCG-free beta subunit are potential markers for infertility management and treatment[J]. Reprod Sci, 2013, 20(9):1038-1045. doi: 10.1177/1933719112472739.
pmid: 23439616 |
[30] | Kaihola H, Yaldir FG, Bohlin T, et al. Levels of caspase-3 and histidine-rich glycoprotein in the embryo secretome as biomarkers of good-quality day-2 embryos and high-quality blastocysts[J]. PLoS One, 2019, 14(12):e0226419. doi: 10.1371/journal.pone.022641. |
[31] |
Montskó G, Gödöny K, Herczeg R, et al. Alpha-1 chain of human haptoglobin as viability marker of in vitro fertilized human embryos: information beyond morphology[J]. Syst Biol Reprod Med, 2019, 65(2):174-180. doi: 10.1080/19396368.2018.1518499.
pmid: 30222008 |
[32] | Toporcerová S, Špaková I, Šoltys K, et al. Small Non-Coding RNAs as New Biomarkers to Evaluate the Quality of the Embryo in the IVF Process[J]. Biomolecules, 2022, 12(11):1687. doi: 10.3390/biom12111687. |
[33] | Esmaeilivand M, Abedelahi A, Hamdi K, et al. Role of miRNAs in preimplantation embryo development and their potential as embryo selection biomarkers[J]. Reprod Fertil Dev, 2022, 34(8):589-597. doi: 10.1071/RD21274. |
[34] |
Abu-Halima M, Khaizaran ZA, Ayesh BM, et al. MicroRNAs in combined spent culture media and sperm are associated with embryo quality and pregnancy outcome[J]. Fertil Steril, 2020, 113(5):970-980.e2. doi: 10.1016/j.fertnstert.2019.12.028.
pmid: 32222254 |
[35] | Esmaeilivand M, Ghasemzadeh A, Niknafs B, et al. Association of Trophectoderm mRNAs and MicroRNAs with Chromosomal Aneuploidy of Embryo[J]. Reprod Sci, 2024, 31(4):1028-1033. doi: 10.1007/s43032-023-01381-y. |
[36] | Xu J, Fang R, Chen L, et al. Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization[J]. Proc Natl Acad Sci U S A, 2016, 113(42):11907-11912. doi: 10.1073/pnas.1613294113. |
[37] | Huang L, Bogale B, Tang Y, et al. Noninvasive preimplantation genetic testing for aneuploidy in spent medium may be more reliable than trophectoderm biopsy[J]. Proc Natl Acad Sci U S A, 2019, 116(28):14105-14112. doi: 10.1073/pnas.1907472116. |
[38] |
Fang R, Yang W, Zhao X, et al. Chromosome screening using culture medium of embryos fertilised in vitro: a pilot clinical study[J]. J Transl Med, 2019, 17(1):73. doi: 10.1186/s12967-019-1827-1.
pmid: 30849973 |
[39] | Chen L, Sun Q, Xu J, et al. A Non-invasive Chromosome Screening Strategy for Prioritizing in vitro Fertilization Embryos for Implantation[J]. Front Cell Dev Biol, 2021,9:708322. doi: 10.3389/fcell.2021.708322. |
[40] | Sun BL, Wang Y, Sixi-Wen, et al. Effectiveness of non-invasive chromosomal screening for normal karyotype and chromosomal rearrangements[J]. Front Genet, 2023,14:1036467. doi: 10.3389/fgene.2023.1036467. |
[41] | Xi H, Qiu L, Yao Y, et al. Noninvasive Chromosome Screening for Evaluating the Clinical Outcomes of Patients With Recurrent Pregnancy Loss or Repeated Implantation Failure[J]. Front Endocrinol(Lausanne), 2022,13:896357. doi: 10.3389/fendo.2022.896357. |
[1] | BIAN Hai-jun, ZHANG Xin-yue, FENG Rui-zhi, QIAN Yun. The Influence of Sperm Factors on Embryonic Development [J]. Journal of International Reproductive Health/Family Planning, 2025, 44(2): 150-154. |
[2] | GONG Zheng, ZHAO Xiao-li, WANG Bao-juan, DONG Rong, LIU Song-han, WANG Cong, XIA Tian. Endometrial Proteomics in Recurrent Implantation Failure Patients with Uterine Coldness [J]. Journal of International Reproductive Health/Family Planning, 2025, 44(1): 1-8. |
[3] | ZHANG Rui-yan, DENG Han-yu, CHEN Ke-xin, MA Zhuo-yao, LIU Yue, DING Zhi-de. The Research Advances in Sperm Maturation and Paternal Epigenetic Inheritance Regulated by Epididymosomes [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(6): 518-523. |
[4] | FU Wan-yu, JIN Sha-wen, JIANG Yu-ying, LI Yan-qing. Clinical Effect of Noninvasive Prenatal Screening Techniques for Rare Autosomal Trisomies and Chromosome Copy Number Variation [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 279-283. |
[5] | JIAO Meng-wen, ZHANG Yue-wen, WANG Ling, MO Shao-kang. Advances in CircRNAs Research in Reproductive System [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 322-327. |
[6] | ZHAO An-qi, LIU Lin, TAN Xiao-fang. HPV Transmission through Sperm and Its Impact on Early Embryonic Development [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 328-331. |
[7] | LI Miao-miao, JIANG Hong, CAI Peng-da. Influence Factor Analysis and Forecasting Research of Embryonic Arrest [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 332-337. |
[8] | TIAN Wei-juan, ZHOU Mei-hua, JIANG Lu-xi, ZHANG Qiong. A Case of Chromosomal Translocation Combined with Chimeric Marker Chromosome Induced Cri-Du-Chat Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 380-383. |
[9] | NI Dan-yu, YANG Ye, XIE Qi-jun, JIANG Wei, LING Xiu-feng. The Effect of Poly-Pronucleus Incidence on Embryo Development and Pregnancy Outcome after ICSI [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 272-276. |
[10] | WEN Xin, ZHAO Xiao-li, LUAN Zu-qian, GAO Na, DONG Rong, XIA Tian. Regulatory Role of N6-Methyladenosine Modification in Oogenesis and Early Embryonic Development [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 310-316. |
[11] | CUI Yu-gui, JIA Hong-yan, SHI Chen-nan, YAN Zheng-jie, LIU Jia-yin, MA Xiang. Clinical Practice of Oocyte Mitochondrial Transplantation and Ethical Issue [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 89-94. |
[12] | GAN Dong-ying, ZHOU Hong. Research Progress in Metabolomics of Oocyte Microenvironment in Elderly Women [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(6): 494-498. |
[13] | CHEN Zhi-jian, WANG Cai-zhu. Application of Time-Lapse Imaging Technology for Embryo Selection: A Review [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(2): 139-142. |
[14] | MAO Fei, FENG Rui-zhi, QIAN Yun. Research Progress in Metabolomics of Mammalian Follicles [J]. Journal of International Reproductive Health/Family Planning, 2021, 40(6): 471-475. |
[15] | CHEN Ran-ran, SONG Dian-rong. The Major Signaling Pathways in Early Embryonic Development [J]. Journal of International Reproductive Health/Family Planning, 2021, 40(6): 481-485. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||