Journal of International Reproductive Health/Family Planning ›› 2023, Vol. 42 ›› Issue (4): 310-316.doi: 10.12280/gjszjk.20230089
• Review • Previous Articles Next Articles
WEN Xin, ZHAO Xiao-li, LUAN Zu-qian, GAO Na, DONG Rong, XIA Tian()
Received:
2023-02-27
Published:
2023-07-15
Online:
2023-07-26
Contact:
XIA Tian
E-mail:xiatian76@163.com
WEN Xin, ZHAO Xiao-li, LUAN Zu-qian, GAO Na, DONG Rong, XIA Tian. Regulatory Role of N6-Methyladenosine Modification in Oogenesis and Early Embryonic Development[J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 310-316.
Add to citation manager EndNote|Ris|BibTeX
[1] |
Han B, Yan S, Wei S, et al. YTHDF1-mediated translation amplifies Wnt-driven intestinal stemness[J]. EMBO Rep, 2020, 21(4):e49229. doi: 10.15252/embr.201949229.
doi: 10.15252/embr.201949229 URL |
[2] |
Lence T, Paolantoni C, Worpenberg L, et al. Mechanistic insights into m6A RNA enzymes[J]. Biochim Biophys Acta Gene Regul Mech, 2019, 1862(3):222-229. doi: 10.1016/j.bbagrm.2018.10.014.
doi: 10.1016/j.bbagrm.2018.10.014 URL |
[3] |
Huang H, Weng H, Chen J. m6A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer[J]. Cancer Cell, 2020, 37(3):270-288. doi: 10.1016/j.ccell.2020.02.004.
doi: 10.1016/j.ccell.2020.02.004 URL |
[4] |
Wang X, Pepling ME. Regulation of Meiotic Prophase One in Mammalian Oocytes[J]. Front Cell Dev Biol, 2021, 9:667306. doi: 10.3389/fcell.2021.667306.
doi: 10.3389/fcell.2021.667306 URL |
[5] |
Llonch S, Barragán M, Nieto P, et al. Single human oocyte transcriptome analysis reveals distinct maturation stage-dependent pathways impacted by age[J]. Aging Cell, 2021, 20(5):e13360. doi: 10.1111/acel.13360.
doi: 10.1111/acel.13360 |
[6] |
Sha QQ, Zhang J, Fan HY. A story of birth and death: mRNA translation and clearance at the onset of maternal-to-zygotic transition in mammals[J]. Biol Reprod, 2019, 101(3):579-590. doi: 10.1093/biolre/ioz012.
doi: 10.1093/biolre/ioz012 URL |
[7] |
Sui X, Hu Y, Ren C, et al. METTL3-mediated m6A is required for murine oocyte maturation and maternal-to-zygotic transition[J]. Cell Cycle, 2020, 19(4):391-404. doi: 10.1080/15384101.2019.1711324.
doi: 10.1080/15384101.2019.1711324 URL |
[8] |
Mu H, Zhang T, Yang Y, et al. METTL3-mediated mRNA N6-methyladenosine is required for oocyte and follicle development in mice[J]. Cell Death Dis, 2021, 12(11):989. doi: 10.1038/s41419-021-04272-9.
doi: 10.1038/s41419-021-04272-9 |
[9] |
McGlacken-Byrne SM, Del Valle I, Quesne Stabej PL, et al. Pathogenic variants in the human m6A reader YTHDC2 are associated with primary ovarian insufficiency[J]. JCI Insight, 2022, 7(5):e154671. doi: 10.1172/jci.insight.154671.
doi: 10.1172/jci.insight.154671 URL |
[10] |
Bailey AS, Batista PJ, Gold RS, et al. The conserved RNA helicase YTHDC2 regulates the transition from proliferation to differentiation in the germline[J]. Elife, 2017, 6:e26116. doi: 10.7554/eLife.26116.
doi: 10.7554/eLife.26116 URL |
[11] |
Wojtas MN, Pandey RR, Mendel M, et al. Regulation of m6A Transcripts by the 3′→5′ RNA Helicase YTHDC2 Is Essential for a Successful Meiotic Program in the Mammalian Germline[J]. Mol Cell, 2017, 68(2):374-387.e12. doi: 10.1016/j.molcel.2017.09.021.
doi: 10.1016/j.molcel.2017.09.021 URL |
[12] |
Abby E, Tourpin S, Ribeiro J, et al. Implementation of meiosis prophase I programme requires a conserved retinoid-independent stabilizer of meiotic transcripts[J]. Nat Commun, 2016, 7:10324. doi: 10.1038/ncomms10324.
doi: 10.1038/ncomms10324 pmid: 26742488 |
[13] |
Hsu PJ, Zhu Y, Ma H, et al. Ythdc2 is an N6-methyladenosine binding protein that regulates mammalian spermatogenesis[J]. Cell Res, 2017, 27(9):1115-1127. doi: 10.1038/cr.2017.99.
doi: 10.1038/cr.2017.99 URL |
[14] |
Jain D, Puno MR, Meydan C, et al. ketu mutant mice uncover an essential meiotic function for the ancient RNA helicase YTHDC2[J]. Elife, 2018, 7:e30919. doi: 10.7554/eLife.30919.
doi: 10.7554/eLife.30919 URL |
[15] |
Li L, Krasnykov K, Homolka D, et al. The XRN1-regulated RNA helicase activity of YTHDC2 ensures mouse fertility independently of m6A recognition[J]. Mol Cell, 2022, 82(9):1678-1690.e12. doi: 10.1016/j.molcel.2022.02.034.
doi: 10.1016/j.molcel.2022.02.034 URL |
[16] |
Zhang S, Deng W, Liu Q, et al. Altered m6A modification is involved in up-regulated expression of FOXO3 in luteinized granulosa cells of non-obese polycystic ovary syndrome patients[J]. J Cell Mol Med, 2020, 24(20):11874-11882. doi: 10.1111/jcmm.15807.
doi: 10.1111/jcmm.15807 URL |
[17] |
Tan M, Cheng Y, Zhong X, et al. LNK promotes granulosa cell apoptosis in PCOS via negatively regulating insulin-stimulated AKT-FOXO3 pathway[J]. Aging(Albany NY), 2021, 13(3):4617-4633. doi: 10.18632/aging.202421.
doi: 10.18632/aging.202421 |
[18] |
Zhou L, Han X, Li W, et al. N6-methyladenosine Demethylase FTO Induces the Dysfunctions of Ovarian Granulosa Cells by Upregulating Flotillin 2[J]. Reprod Sci, 2022, 29(4):1305-1315. doi: 10.1007/s43032-021-00664-6.
doi: 10.1007/s43032-021-00664-6 |
[19] |
Jiang ZX, Wang YN, Li ZY, et al. Correction: The m6A mRNA demethylase FTO in granulosa cells retards FOS-dependent ovarian aging[J]. Cell Death Dis, 2021, 12(12):1114. doi: 10.1038/s41419-021-04194-6.
doi: 10.1038/s41419-021-04194-6 |
[20] |
Tian B, Manley JL. Alternative polyadenylation of mRNA precursors[J]. Nat Rev Mol Cell Biol, 2017, 18(1):18-30. doi: 10.1038/nrm.2016.116.
doi: 10.1038/nrm.2016.116 |
[21] |
Kasowitz SD, Ma J, Anderson SJ, et al. Nuclear m6A reader YTHDC1 regulates alternative polyadenylation and splicing during mouse oocyte development[J]. PLoS Genet, 2018, 14(5):e1007412. doi: 10.1371/journal.pgen.1007412.
doi: 10.1371/journal.pgen.1007412 URL |
[22] |
Hu Y, Ouyang Z, Sui X, et al. Oocyte competence is maintained by m6A methyltransferase KIAA1429-mediated RNA metabolism during mouse follicular development[J]. Cell Death Differ, 2020, 27(8):2468-2483. doi: 10.1038/s41418-020-0516-1.
doi: 10.1038/s41418-020-0516-1 |
[23] |
Wang YK, Yu XX, Liu YH, et al. Reduced nucleic acid methylation impairs meiotic maturation and developmental potency of pig oocytes[J]. Theriogenology, 2018, 121:160-167. doi: 10.1016/j.theriogenology.2018.08.009.
doi: 10.1016/j.theriogenology.2018.08.009 URL |
[24] |
Ivanova I, Much C, Di Giacomo M, et al. The RNA m6A Reader YTHDF2 Is Essential for the Post-transcriptional Regulation of the Maternal Transcriptome and Oocyte Competence[J]. Mol Cell, 2017, 67(6):1059-1067.e4. doi: 10.1016/j.molcel.2017.08.003.
doi: S1097-2765(17)30577-4 pmid: 28867294 |
[25] |
Toyooka Y. Trophoblast lineage specification in the mammalian preimplantation embryo[J]. Reprod Med Biol, 2020, 19(3):209-221. doi: 10.1002/rmb2.12333.
doi: 10.1002/rmb2.12333 pmid: 32684820 |
[26] |
Zhao BS, Wang X, Beadell AV, et al. m6A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition[J]. Nature, 2017, 542(7642):475-478. doi: 10.1038/nature21355.
doi: 10.1038/nature21355 |
[27] |
Deng M, Chen B, Liu Z, et al. YTHDF2 Regulates Maternal Transcriptome Degradation and Embryo Development in Goat[J]. Front Cell Dev Biol, 2020, 8:580367. doi: 10.3389/fcell.2020.580367.
doi: 10.3389/fcell.2020.580367 URL |
[28] |
Liu HB, Muhammad T, Guo Y, et al. RNA-Binding Protein IGF2BP2/IMP2 is a Critical Maternal Activator in Early Zygotic Genome Activation[J]. Adv Sci(Weinh), 2019, 6(15):1900295. doi: 10.1002/advs.201900295.
doi: 10.1002/advs.201900295 |
[29] |
Choi HS, Lee HM, Jang YJ, et al. Heterogeneous nuclear ribonucleoprotein A2/B1 regulates the self-renewal and pluripotency of human embryonic stem cells via the control of the G1/S transition[J]. Stem Cells, 2013, 31(12):2647-2658. doi: 10.1002/stem.1366.
doi: 10.1002/stem.1366 pmid: 23495120 |
[30] |
Kwon J, Jo YJ, Namgoong S, et al. Functional roles of hnRNPA2/B1 regulated by METTL3 in mammalian embryonic development[J]. Sci Rep, 2019, 9(1):8640. doi: 10.1038/s41598-019-44714-1.
doi: 10.1038/s41598-019-44714-1 pmid: 31201338 |
[31] |
Cao Z, Zhang L, Hong R, et al. METTL3-mediated m6A methylation negatively modulates autophagy to support porcine blastocyst development[J]. Biol Reprod, 2021, 104(5):1008-1021. doi: 10.1093/biolre/ioab022.
doi: 10.1093/biolre/ioab022 URL |
[32] |
Meng TG, Lu X, Guo L, et al. Mettl14 is required for mouse postimplantation development by facilitating epiblast maturation[J]. FASEB J, 2019, 33(1):1179-1187. doi: 10.1096/fj.201800719R.
doi: 10.1096/fj.201800719R URL |
[33] |
Wang Y, Li Y, Toth JI, et al. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells[J]. Nat Cell Biol, 2014, 16(2):191-198. doi: 10.1038/ncb2902.
doi: 10.1038/ncb2902 pmid: 24394384 |
[34] |
Wu R, Liu Y, Zhao Y, et al. m6A methylation controls pluripotency of porcine induced pluripotent stem cells by targeting SOCS3/JAK2/STAT3 pathway in a YTHDF1/YTHDF2-orchestrated manner[J]. Cell Death Dis, 2019, 10(3):171. doi: 10.1038/s41419-019-1417-4.
doi: 10.1038/s41419-019-1417-4 |
[35] |
Batista PJ, Molinie B, Wang J, et al. m6A RNA modification controls cell fate transition in mammalian embryonic stem cells[J]. Cell Stem Cell, 2014, 15(6):707-719. doi: 10.1016/j.stem.2014.09.019.
doi: 10.1016/j.stem.2014.09.019 pmid: 25456834 |
[36] |
Geula S, Moshitch-Moshkovitz S, Dominissini D, et al. Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation[J]. Science, 2015, 347(6225):1002-1006. doi: 10.1126/science.1261417.
doi: 10.1126/science.1261417 pmid: 25569111 |
[37] |
Xue P, Zhou W, Fan W, et al. Increased METTL3-mediated m6A methylation inhibits embryo implantation by repressing HOXA10 expression in recurrent implantation failure[J]. Reprod Biol Endocrinol, 2021, 19(1):187. doi: 10.1186/s12958-021-00872-4.
doi: 10.1186/s12958-021-00872-4 |
[38] |
Qiu W, Zhou Y, Wu H, et al. RNA Demethylase FTO Mediated RNA m6A Modification Is Involved in Maintaining Maternal-Fetal Interface in Spontaneous Abortion[J]. Front Cell Dev Biol, 2021, 9:617172. doi: 10.3389/fcell.2021.617172.
doi: 10.3389/fcell.2021.617172 URL |
[39] |
Li XC, Jin F, Wang BY, et al. The m6A demethylase ALKBH5 controls trophoblast invasion at the maternal-fetal interface by regulating the stability of CYR61 mRNA[J]. Theranostics, 2019, 9(13):3853-3865. doi: 10.7150/thno.31868.
doi: 10.7150/thno.31868 URL |
[40] |
Guo Y, Song W, Yang Y. Inhibition of ALKBH5-mediated m6A modification of PPARG mRNA alleviates H/R-induced oxidative stress and apoptosis in placenta trophoblast[J]. Environ Toxicol, 2022, 37(4):910-924. doi: 10.1002/tox.23454.
doi: 10.1002/tox.23454 URL |
[1] | JIAO Meng-wen, ZHANG Yue-wen, WANG Ling, MO Shao-kang. Advances in CircRNAs Research in Reproductive System [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 322-327. |
[2] | ZHAO An-qi, LIU Lin, TAN Xiao-fang. HPV Transmission through Sperm and Its Impact on Early Embryonic Development [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 328-331. |
[3] | LI Miao-miao, JIANG Hong, CAI Peng-da. Influence Factor Analysis and Forecasting Research of Embryonic Arrest [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(4): 332-337. |
[4] | LIU Yi-ran, FENG Rui-zhi, QIAN Yun. Research Progress on Post-Translational Modification in Polycystic Ovary Syndrome [J]. Journal of International Reproductive Health/Family Planning, 2024, 43(1): 38-42. |
[5] | ZHOU Xin-yue, ZHANG An-ni, ZHANG Xue-hong. Research Progress of m6A Modification in Reproductive-Related Diseases [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(5): 392-397. |
[6] | NI Dan-yu, YANG Ye, XIE Qi-jun, JIANG Wei, LING Xiu-feng. The Effect of Poly-Pronucleus Incidence on Embryo Development and Pregnancy Outcome after ICSI [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(4): 272-276. |
[7] | CUI Yu-gui, JIA Hong-yan, SHI Chen-nan, YAN Zheng-jie, LIU Jia-yin, MA Xiang. Clinical Practice of Oocyte Mitochondrial Transplantation and Ethical Issue [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(2): 89-94. |
[8] | XIONG Yu-jing, LUO Wan-bin, AI Xi-xiong, XU Yan-wen. The Pathogenesis of Chronic Endometritis: A Review [J]. Journal of International Reproductive Health/Family Planning, 2023, 42(1): 60-65. |
[9] | CHEN Zhi-jian, WANG Cai-zhu. Application of Time-Lapse Imaging Technology for Embryo Selection: A Review [J]. Journal of International Reproductive Health/Family Planning, 2022, 41(2): 139-142. |
[10] | CHEN Ran-ran, SONG Dian-rong. The Major Signaling Pathways in Early Embryonic Development [J]. Journal of International Reproductive Health/Family Planning, 2021, 40(6): 481-485. |
[11] | LI Wen-shu, LIU Xue-mei. A Case Report of Early Embryonic Arrest due to TUBB8 Mutation [J]. Journal of International Reproductive Health/Family Planning, 2021, 40(4): 303-305. |
[12] | WANG Bin, GAO Ming-xia, SHEN Hao-fei, WANG Yi-qing, ZHANG Xue-hong. Research Progress of Mesenchymal-Epithelial Transition in Female Reproductive System [J]. Journal of International Reproductive Health/Family Planning, 2021, 40(1): 44-48. |
[13] | ZHU Jing-xi, LI Hong. Research Progress of Epigenetics in Recurrent Spontaneous Abortion [J]. Journal of International Reproductive Health/Family Planning, 2021, 40(1): 69-73. |
[14] | ZHANG Min, DU Xin, LI Bei-bei, JIANG Hong. Correlation between Mitochondrial DNA of Oocyte and Embryo Development Quality [J]. Journal of International Reproductive Health/Family Planning, 2020, 39(6): 486-489. |
[15] | FU Gao-hui, YANG Tian-hao, LI Chao, BAI Yin-shan. Roles of TET3 in Regulating Gametogenesis and Embryonic Development [J]. Journal of International Reproductive Health/Family Planning, 2020, 39(5): 401-406. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||